Math—19 Jan 2012

- Announcements
 - . Homework 1 is due on Tues, the 24th.
 - Office hours: Tues, Thurs, 12:00-1:00
 - · A few scribes have not sent answers to their questions. Get them in!
- Outline
 - 4-vector
 - · Spacetime diagram, t and x axis in a moving frame
 - Transformations
 - More sophisticated notation
 - · What is conserved?

4-vectors

The position of an event (t, x, y, z) is a 4 vector.

Q: In what ways is it different from a set of 4 numbers?

Spacetime diagram

A spacetime diagram is a plot of position and time. We use the same units for space and time; e. g., meters and time-meter (the time for light to travel a meter).

Kristen is moving at speed 0.2. At time t = 0, she is at x = 1. Her worldline (position vs time) is on the plot. Carlos is moving at the same speed. At time t = 0, he is at x = 0.

Consider the distance² between the origin and events on her worldline. Calculate it with the Minkowski metric

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$$

$$ln[622]:= dist2[t_, v_] := (1 + v t)^2 - t^2;$$

2 01-19.nb

 $\begin{array}{ll} & \text{In}\{625\} = & \text{Plot}[\text{dist2[t, .2], \{t, 0, 1.4}\}, \text{ImageSize} \rightarrow 300, \\ & & \text{Evaluate@bs, AxesLabel} \rightarrow \{\text{"t", "distance"}\}] \end{array}$

Q: The distance² = 0 for some event. Why? What is the relationship between x and t for this event?

■ What event happens at the same time as event O in Kristen's frame?

Why is the distance is a maximum for some time?

To find the time for which distance is a maximum, $\frac{d}{dt}[(1-vt)^2-t^2]=0$. The distance is a maximum at

$$(t, x) = (v/(1-v^2), 1/(1-v^2)).$$

The maximum distance is $1/(1-v^2)$.

Recall that distance is an invariant, its is the same in my frame of reference and in Kristen-Carlos' frame.

Because the events on Kristen's world line are at the same x' in Kristen-Carlos' frame,

$$s^2 = -t^{'2} + x^{'2}$$

is a maximum for t' = 0. Events O and B occur at the same time in Kristen-Carlos frame.

We have figured out the x' axis.

■ Regions in spacetime

We have figured out events for which the distance² is greater than 0 and 0. Since distance is invarient, these events map out regions that have a physical meaning.

 $s^2 = 0$ for events O and C. Event O is on the light cone.

 $s^2 < 0$ Time-like region

Plots

Transformations

Lorentz transformation

We found the event $(t, x) = (v/(1-v^2), 1/(1-v^2))$ transforms to $(t', x') = (0, 1/(1-v^2))$ in Kristen-Carlos' frame.

The coordinates of an event (t, x, y, z) become in a frame moving at v in the x direction

$$t' = (t - vx) / (1 - v^2)^{1/2}$$

$$x' = (x - vt) / (1 - v^2)^{1/2}$$

$$y' = y$$

$$z' = z$$

- Rotation
- Translation
- Scale

Operations that make new 4-vectors

A 4-vector is an object that has the same transformations as (t, x, y, z).

A scalar is an object that is invariant under transformations.

All of the transformations are linear. Therefore if A and B are 4-vectors and a and b are scalars, aA + bB is a 4 vector.

4 01-19.nb

4-velocity

Construct a new 4-vector from (dt, dx, dy, dz).

$$d\tau = [dt^2 - (dx^2 + dy^2 + dz^2)]^{1/2}$$
 is a scalar.

Define the 4-velocity

$$u \equiv \left(\frac{dt}{d\tau}, \frac{dx}{d\tau}, \frac{dy}{d\tau}, \frac{dz}{d\tau}\right)$$

Since this is the product of a 4-vector and a scalar, it is a 4-vector.

The components are

$$u = (\gamma, \gamma v_x, \gamma v_y, \gamma v_z),$$
where $\gamma = (1 - v^2)^{-1/2}$.

The length² of u is -1

4-momentum

Construct a new 4-vector from the 4-velocity. Multiply by the rest mass, the mass observed in a frame in which the particle is at rest. The 4-momentum is

 $p \equiv m u$.

In components,

 $p = m \gamma (1, v_x, v_y, v_z)$

or

$$p = (E, p_x, p_y, p_z)$$

- Q: What is the length of p?
- Q: I already know the transformation of p to a frame that is moving with respect to me. Why?

More sophisticated notation

4 - vectors written as contravarient vectors

Write a 4-vector a as its components in this way:

$$(a^0, a^1, a^2, a^3)$$

The 0-th component is the time component. The 1, 2, 3 components are x, y, z.

Or this way:

$$a^{\mu}$$

Use a Greek letter as a superscript. This is called a contravarient 4 vector.

■ Metric tensor

The metric is written $g_{\mu\nu}$. Letter g is used.

This is a 4×4 tensor. (We will learn what a tensor is later.) The Schwartzschild metrics that we encountered are diagonal

Minkowski metric

$$g_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$g_{\mu\nu} = \begin{pmatrix} -\left(1 - 2\frac{M}{r}\right) & 0 & 0 & 0 \\ 0 & \left(1 - 2\frac{M}{r}\right)^{-1} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2\theta \end{pmatrix}$$

■ Contraction

The length of a contravariant vector is

$$a \cdot a = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} a^{\mu} a^{\nu} g_{\mu\nu}$$

Rule: If the same Greek letter occurs in both the subscript and superscript, sum over it. With is rule,

$$a \cdot a \equiv a^{\mu} a^{\nu} g_{\mu\nu}$$

■ Covariant vectors

A covarient vector is the contraction of a contravariant vector and the metric tensor.

$$a_{\mu} = a^{\nu} g_{\mu\nu}$$

Example: A contravariant 3-vector is

$$a^{\mu} = (dr, d\theta, d\phi)$$

The metric tensor is

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$

The covariant vector is

$$a_u = (dr, r^2 d\theta, r^2 \sin^2 \theta d\phi)$$

Q: If I measured the distance between two points that differ in θ only, would I get the contravariant component, or the covariant component, or something else?

Spacetime near a star

The contravariant vector between two events is

$$dx = (dt, dr, d\theta, d\phi).$$

The metric tensor is

$$g_{\mu\nu} = \begin{pmatrix} -\left(1 - 2\frac{M}{r}\right) & 0 & 0 & 0\\ 0 & \left(1 - 2\frac{M}{r}\right)^{-1} & 0 & 0\\ 0 & 0 & r^{2} & 0\\ 0 & 0 & 0 & r^{2} \sin^{2}\theta \end{pmatrix}$$

The contravariant 4-momentum is

$$p^{\mu} = m \left(\frac{dt}{d\tau}, \frac{dr}{d\tau}, \frac{d\theta}{d\tau}, \frac{d\phi}{d\tau} \right).$$

The covariant 4-momentum is

$$p_{\mu} = m \left(-\left(1 - 2\frac{M}{r}\right) \frac{dt}{d\tau}, \left(1 - 2\frac{M}{r}\right)^{-1} \frac{dr}{d\tau}, r^2 \frac{d\theta}{d\tau}, r^2 \sin^2\theta \frac{d\phi}{d\tau} \right).$$

6 01-19.nb

Q: If I measure the momentum in the ϕ direction, what do I get? What is it called?

Conservation laws, an example

Gravitational redshift reconsidered

We found ..

For $r_1 = \infty$,

$$v(r) = v_{\infty} \left(1 - 2\frac{M}{r}\right)^{-1/2}$$
. (1)

Since energy E = h v, v is directly proportional to energy. We know how

The contravariant 4-momentum is

$$p^{\mu} = (p^0, p^r, p^{\theta}, p^{\phi}).$$

The covariant 4-momentum in the time direction

$$p_0 = g_{0 \mu} p^{\mu}$$

Since the metric is diagonal,

$$p_0 = g_{00} p^0$$
.

The measured energy is E_m .

$$E_m^2 = -(p^0)^2 g_{00}$$

Rewrite as

$$E_m^2 = -(p^0)^2 g_{00} = -(g_{00} p^0)^2 g_{00}^{-1} = -(p_0)^2 g_{00}^{-1}$$

Substiture Equation 1 to get

$$(h \nu_{\infty})^2 g_{00}^{-1} = -(p_0)^2 g_{00}^{-1}$$

Therefore

$$p_0 = h v_\infty$$

Noether's theorem

We have discovered a case of Noether's theorem. If the metric does not change by translating a coordinate γ , then the conjugate momentum p_{γ} is conserved.

Here the metric does not depend on time. Therefore Noether's theorem say p_0 is conserved.

Q: Apply Noether's theorem to the x-coordinate in flat space with coordinates (t, x, y, z). What is conserved?