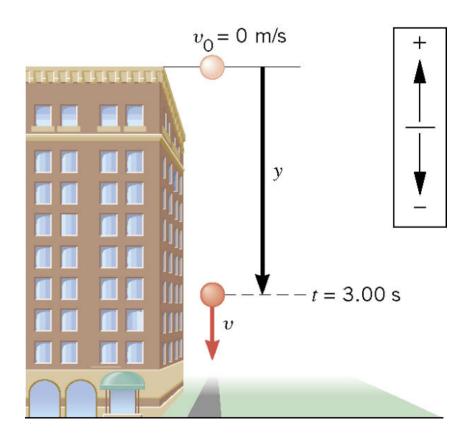
Chapter 2

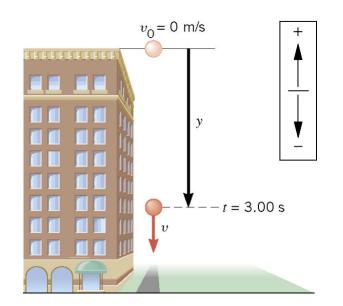
Kinematics in One Dimension

continued

Example 10 A Falling Stone

A stone is dropped from the top of a tall building. After 3.00s of free fall, what is the displacement *y* of the stone?





У	а	V	V _o	t
?	-9.80 m/s ²		0 m/s	3.00 s

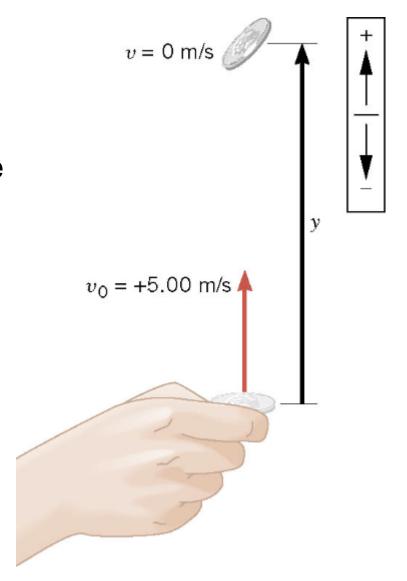
$$y = v_o t + \frac{1}{2} a t^2$$

$$= (0 \text{ m/s})(3.00 \text{ s}) + \frac{1}{2} (-9.80 \text{ m/s}^2)(3.00 \text{ s})^2$$

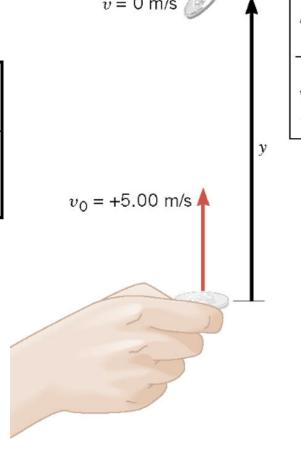
$$= -44.1 \text{ m}$$

Example 12 How High Does it Go?

The referee tosses the coin up with an initial speed of 5.00m/s. In the absence if air resistance, how high does the coin go above its point of release?



У	а	V	V _o	t
?	-9.80 m/s ²	0 m/s	+5.00 m/s	



$$v^2 = v_o^2 + 2ay \qquad \Longrightarrow \qquad y = \frac{v^2 - v_o^2}{2a}$$

$$y = \frac{v^2 - v_o^2}{2a} = \frac{(0 \text{ m/s})^2 - (5.00 \text{ m/s})^2}{2(-9.80 \text{ m/s}^2)} = 1.28 \text{ m}$$

Conceptual Example 14 Acceleration Versus Velocity

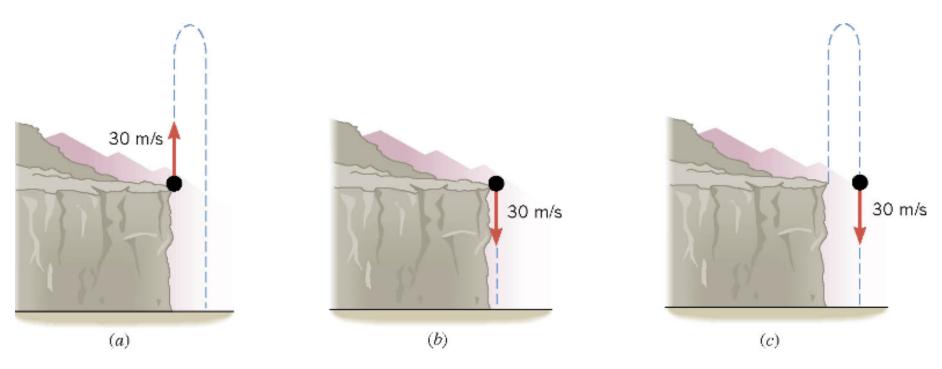
There are three parts to the motion of the coin.

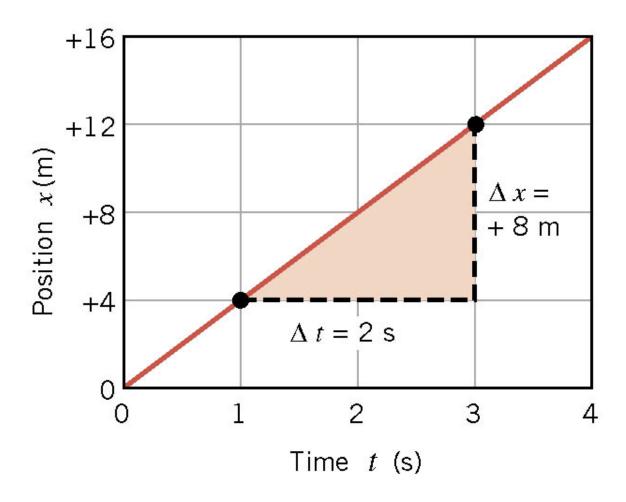
- 1) On the way up, the coin has an upward-pointing velocity with a decreasing magnitude.
- 2) At that time the coin reaches the top of its path, the coin has an instantaneously zero velocity.
- 3) On the way down, the coin has a downward-pointing velocity with an increasing magnitude.

In the absence of air resistance, does the acceleration vector of the coin, like the velocity, change from one part to another?

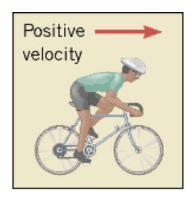
Conceptual Example 15 Taking Advantage of Symmetry

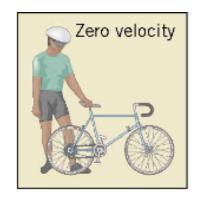
Does the pellet in part b strike the ground beneath the cliff with a smaller, greater, or the same speed as the pellet in part a?

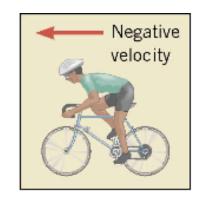


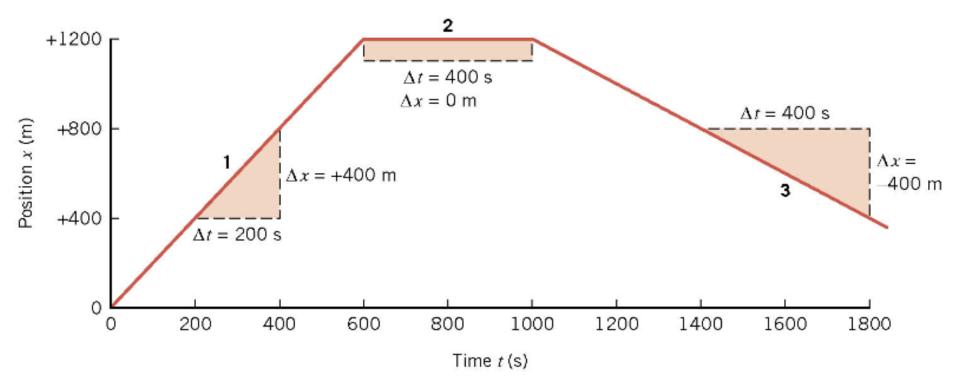


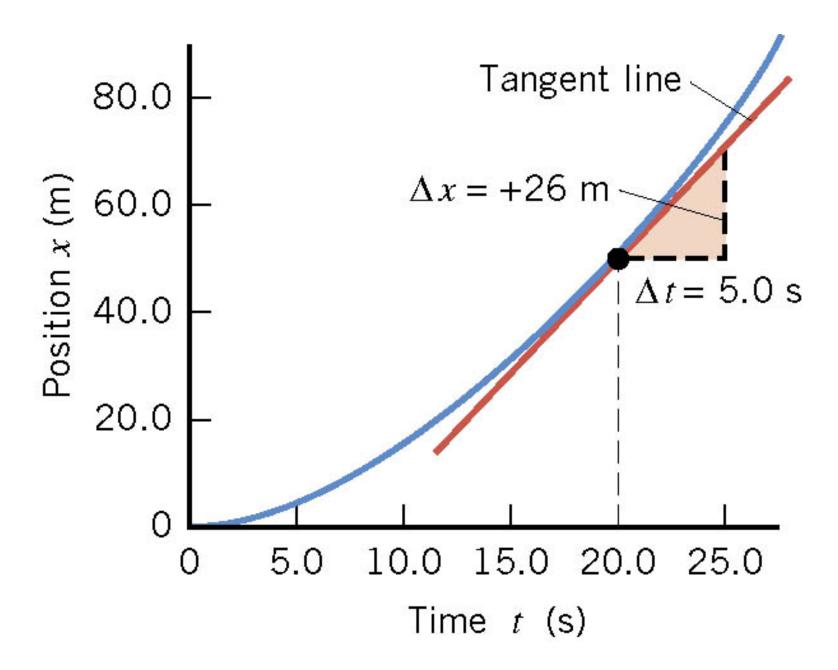
Slope =
$$\frac{\Delta x}{\Delta t}$$
 = $\frac{+8 \text{ m}}{2 \text{ s}}$ = $+4 \text{ m/s}$

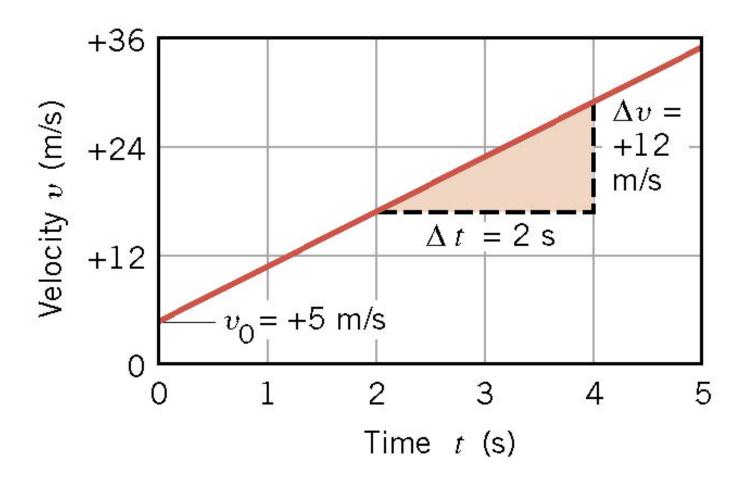












Slope =
$$\frac{\Delta v}{\Delta t}$$
 = $\frac{+12 \text{ m/s}}{2 \text{ s}}$ = $+6 \text{ m/s}^2$

Chapter 3

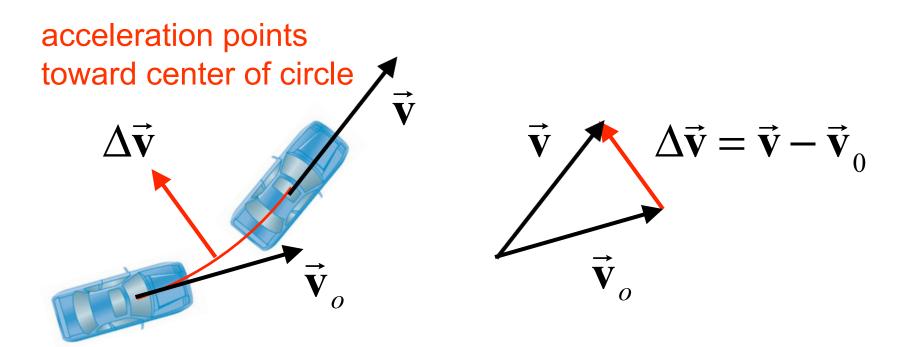
Kinematics in Two Dimensions

3.1 Displacement, Velocity, and Acceleration

DEFINITION OF AVERAGE ACCELERATION

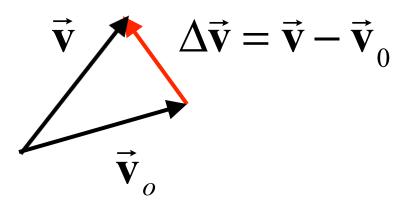
$$\overline{\mathbf{a}} = \frac{\overrightarrow{\mathbf{v}} - \overrightarrow{\mathbf{v}}_o}{t - t_o} = \frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}$$

Consider a velocity that keeps the <u>same magnitude (speed)</u> but changes its direction, e.g., car going around a curve.



How to see this:

$$\Delta \vec{\mathbf{v}} = \vec{\mathbf{v}} - \vec{\mathbf{v}}_0$$



$$= \vec{\mathbf{v}} + \left(-\vec{\mathbf{v}}_0\right)$$

acceleration points toward center of circle $\Delta \vec{\mathbf{v}} = \vec{\mathbf{v}} - \vec{\mathbf{v}}_0$

$$\Delta \vec{\mathbf{v}} = \vec{\mathbf{v}} - \vec{\mathbf{v}}_0$$

Need in Chapter 5 when uniform circular motion is discussed.

Equations of 1D Kinematics

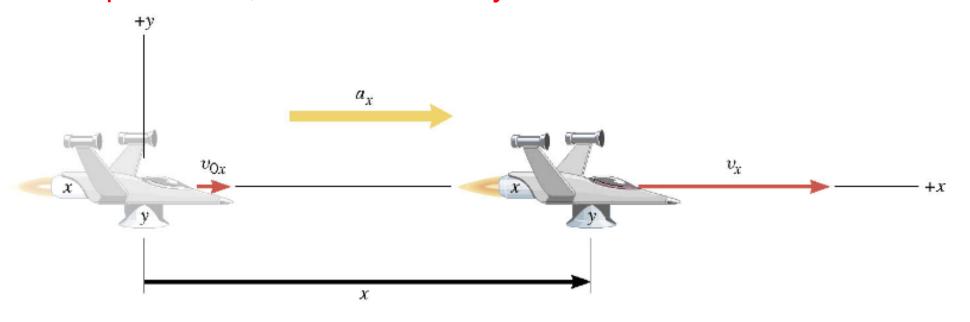
$$v = v_0 + at$$

$$x = \frac{1}{2} \left(v_0 + v \right) t$$

$$v^2 = v_0^2 + 2ax$$

$$x = v_0 t + \frac{1}{2} a t^2$$

Except for time, motion in x and y directions are INDEPENDENT.

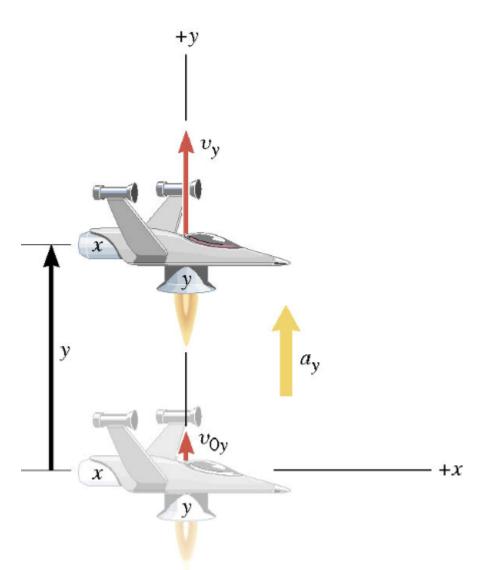


Motion in x direction.

$$v_x = v_{0x} + a_x t$$
 $x = \frac{1}{2} (v_{0x} + v_x) t$

$$x = v_{0x}t + \frac{1}{2}a_xt^2$$
 $v_x^2 = v_{0x}^2 + 2a_xx$

Except for time, motion in x and y directions are INDEPENDENT.



Motion in y direction.

$$v_{y} = v_{0y} + a_{y}t$$

$$y = v_{0y}t + \frac{1}{2}a_{y}t^{2}$$

$$y = \frac{1}{2} \left(v_{0y} + v_y \right) t$$

$$v_y^2 = v_{0y}^2 + 2a_y y$$

Reasoning Strategy

- 1. Make a drawing.
- 2. Decide which directions are to be called positive (+) and negative (-).
- 3. Write down the values that are given for any of the five kinematic variables associated with each direction.

Example 1 A Moving Spacecraft

In the x direction, the spacecraft has an initial velocity component of +22 m/s and an acceleration of +24 m/s². In the y direction, the analogous quantities are +14 m/s and an acceleration of +12 m/s². Find (a) x and v_x , (b) y and v_y , and (c) the final velocity of the spacecraft at time 7.0 s.

Want final values: $v_{0x} = +22 \text{ m/s}$ $v_{0y} = +14 \text{ m/s}$ $v_{0y} = +12 \text{ m/s}$

Reasoning Strategy

- 1. Make a drawing.
- 2. Decide which directions are to be called positive (+) and negative (-).
- 3. Write down the values that are given for any of the five kinematic variables associated with each direction.
- 4. Verify that the information contains values for at least three of the kinematic variables. Do this for *x* and *y*. Select the appropriate equation.
- 5. When the motion is divided into segments, remember that the final velocity of one segment is the initial velocity for the next.
- 6. Keep in mind that there may be two possible answers to a kinematics problem.

Example 1 A Moving Spacecraft:

x direction motion

X	a_{x}	V _X	V _{ox}	t
?	+24.0 m/s ²	?	+22 m/s	7.0 s

$$x = v_{ox}t + \frac{1}{2}a_xt^2$$

$$= (22 \text{ m/s})(7.0 \text{ s}) + \frac{1}{2}(24 \text{ m/s}^2)(7.0 \text{ s})^2 = +740 \text{ m}$$

$$v_x = v_{ox} + a_x t$$

= $(22 \text{ m/s}) + (24 \text{ m/s}^2)(7.0 \text{ s}) = +190 \text{ m/s}$

Example 1 A Moving Spacecraft:

y direction motion

У	a_y	V_y	V _{oy}	t
?	+12.0 m/s ²	?	+14 m/s	7.0 s

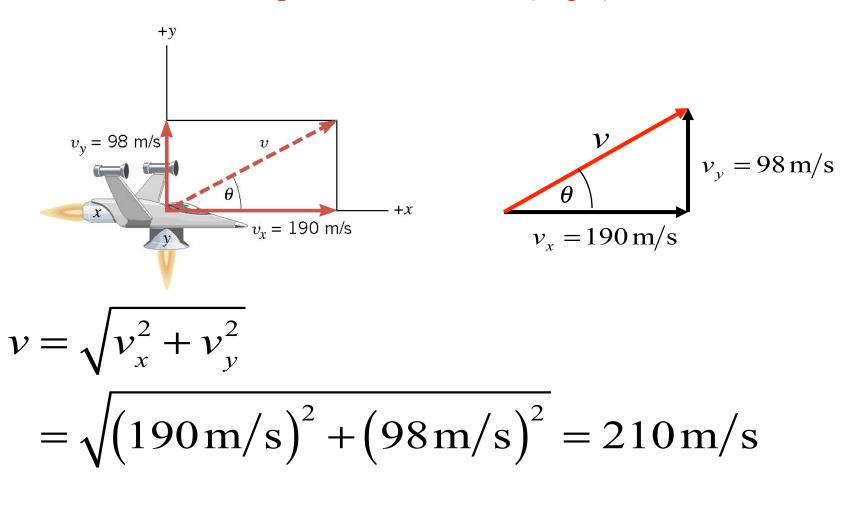
$$y = v_{oy}t + \frac{1}{2}a_yt^2$$

= $(14 \text{ m/s})(7.0 \text{ s}) + \frac{1}{2}(12 \text{ m/s}^2)(7.0 \text{ s})^2 = +390 \text{ m}$

$$v_y = v_{oy} + a_y t$$

= $(14 \text{ m/s}) + (12 \text{ m/s}^2)(7.0 \text{ s}) = +98 \text{ m/s}$

Can also find final speed and direction (angle) at t = 7s.



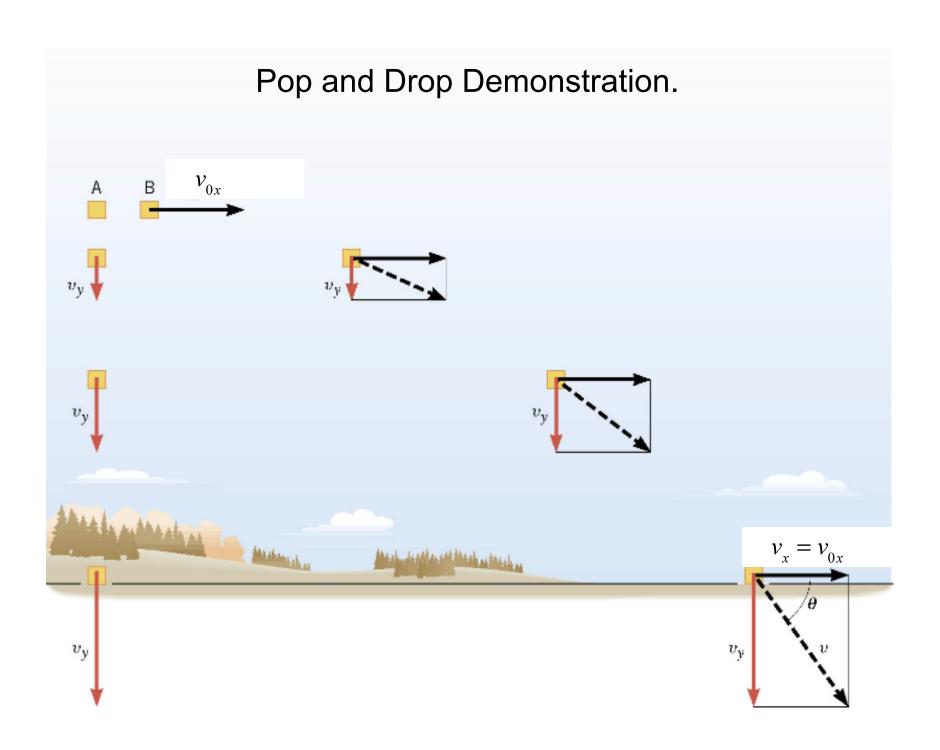
$$\theta = \tan^{-1}(98/190) = 27^{\circ}$$

Under the influence of gravity alone, an object near the surface of the Earth will accelerate downwards at 9.80m/s².

$$a_y = -9.80 \,\mathrm{m/s^2}$$
 $a_x = 0$

Great simplification for projectiles!

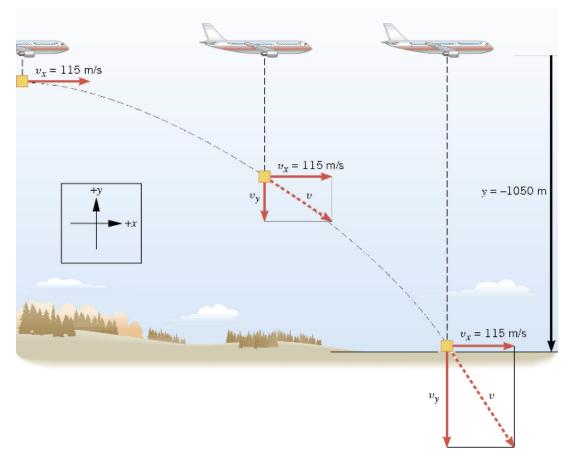
$$v_x = v_{ox} = \text{constant}$$



Example 3 A Falling Care Package

The airplane is moving horizontally with a constant velocity of +115 m/s at an altitude of 1050m. Determine the time required for the care package to hit the ground.

Time to hit the ground depends ONLY on vertical motion



$$v_{oy} = 0$$

$$a_y = -9.8 \text{ m/s}^2$$

$$y = 1050 \text{ m}$$

У	a_y	V_y	V _{oy}	t
-1050 m	-9.80 m/s ²		0 m/s	

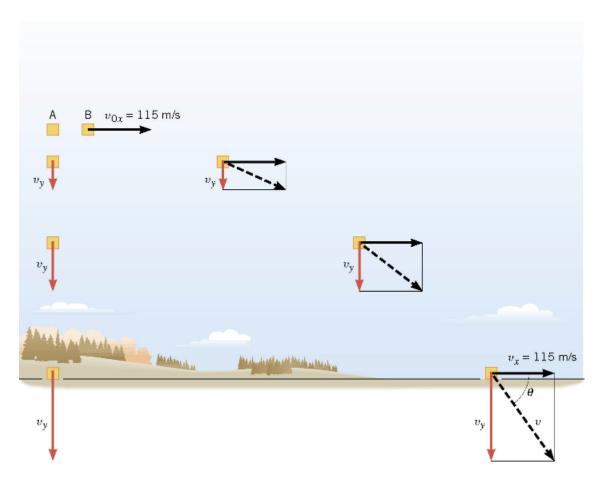
$$y = v_{oy}t + \frac{1}{2}a_yt^2$$
 \implies $y = \frac{1}{2}a_yt^2$

$$t = \sqrt{\frac{2y}{a_y}} = \sqrt{\frac{2(-1050 \text{ m})}{-9.80 \text{ m/s}^2}} = 14.6 \text{ s}$$

Example 4 The Velocity of the Care Package

What are the magnitude and direction of the final velocity of

the care package?



$$v_{0y} = 0$$
 $a_y = -9.8 \text{ m/s}^2$
 $y = 1050 \text{ m}$
 $t = 14.6 \text{ s}$
 $v_{0x} = +115 \text{ m/s}$
 $a_x = 0$
 $v_x = v_{0x} = +115 \text{ m/s}$

x-component does not change

У	a_y	V_y	V _{oy}	t
-1050 m	-9.80 m/s ²	?	0 m/s	14.6 s

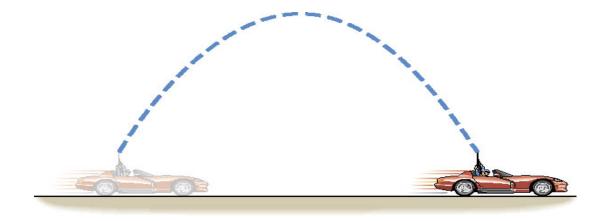
$$v_y = v_{oy} + a_y t = 0 + (-9.80 \text{ m/s}^2)(14.6 \text{ s})$$

= -143 m/s y-component of final velocity.

$$v_x = v_{ox} = +115 \text{ m/s}$$
 $v = \sqrt{v_x^2 + v_y^2} = 184 \text{ m/s}$ $\theta = \tan^{-1} \left(\frac{v_y}{v_x}\right) = \tan^{-1} \left(\frac{-143}{+115}\right) = -51^\circ$

Conceptual Example 5 I Shot a Bullet into the Air...

Suppose you are driving a convertible with the top down. The car is moving to the right at constant velocity. You point a rifle straight up into the air and fire it. In the absence of air resistance, where would the bullet land – behind you, ahead of you, or in the barrel of the rifle?

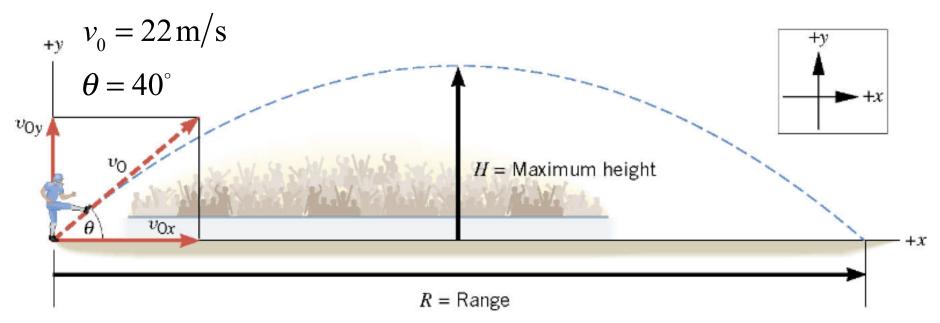


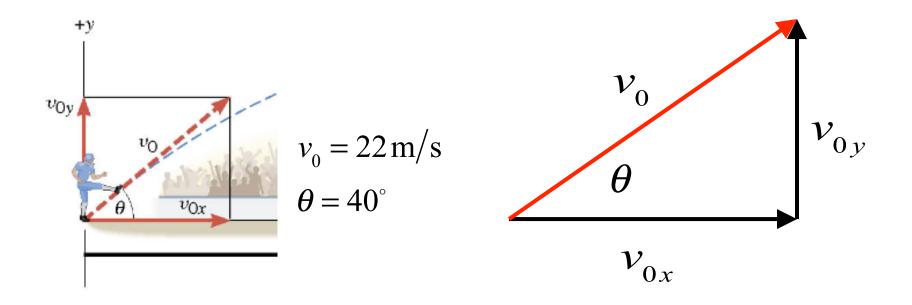
Ballistic Cart Demonstration

Example 6 The Height of a Kickoff

A placekicker kicks a football at and angle of 40.0 degrees and the initial speed of the ball is 22 m/s. Ignoring air resistance, determine the maximum height that the ball attains.

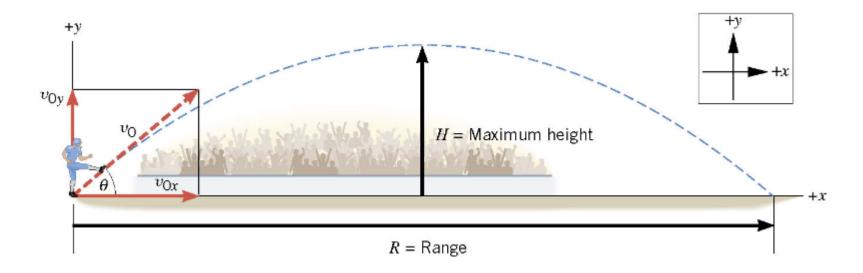
maximum height and "hang time" depend only on the y-component of initial velocity





$$v_{0y} = v_0 \sin \theta = (22 \text{ m/s}) \sin 40^\circ = 14 \text{ m/s}$$

 $v_{0x} = v_0 \cos \theta = (22 \text{ m/s}) \cos 40^\circ = 17 \text{ m/s}$

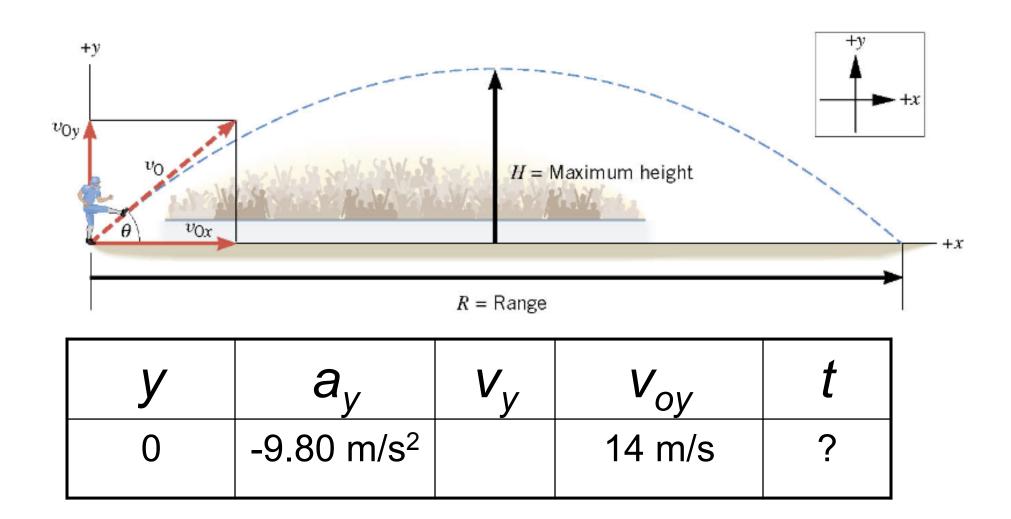


У	a_y	V_y	V _{oy}	t
?	-9.80 m/s ²	0	14 m/s	

$$v_y^2 = v_{0y}^2 + 2a_y y \qquad y = \frac{v_y^2 - v_{0y}^2}{2a_y}$$
$$y = \frac{0 - (14 \text{ m/s})^2}{2(-9.8 \text{ m/s}^2)} = +10 \text{ m}$$

Example 7 The Time of Flight of a Kickoff

What is the time of flight between kickoff and landing?



У	a_y	V_y	V _{oy}	t
0	-9.80 m/s ²		14 m/s	?

$$y = v_{0y}t + \frac{1}{2}a_{y}t^{2}$$

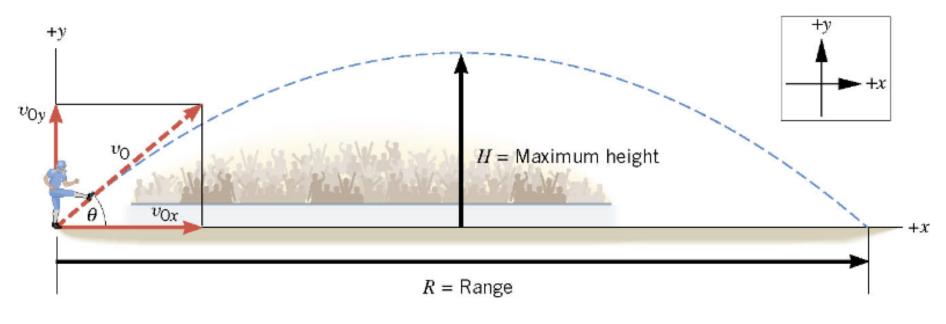
$$0 = (14 \,\mathrm{m/s})t + \frac{1}{2}(-9.80 \,\mathrm{m/s^2})t^2$$

$$0 = 2(14 \,\mathrm{m/s}) + (-9.80 \,\mathrm{m/s^2})t$$

$$t = 2.9 \, \mathrm{s}$$

Example 8 The Range of a Kickoff Calculate the range R of the projectile.

Range depends on the hang time and x-component of initial velocity

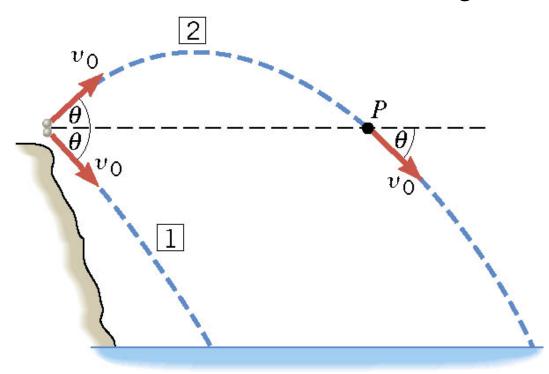


$$x = v_{ox}t + \frac{1}{2}a_xt^2 = v_{ox}t$$

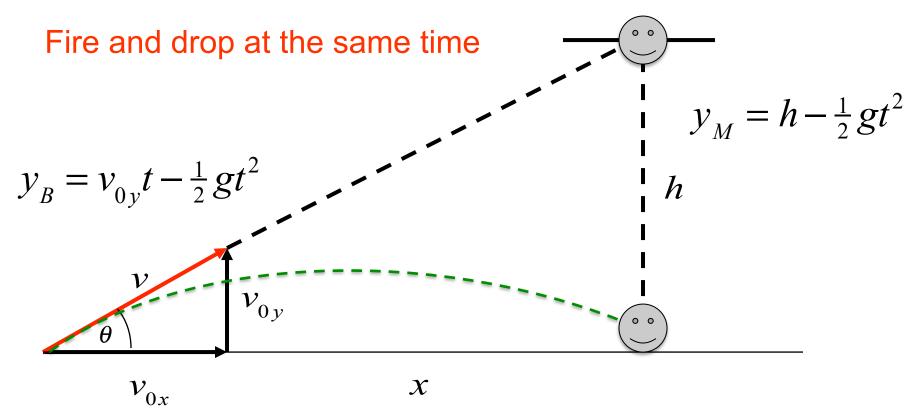
= $(17 \text{ m/s})(2.9 \text{ s}) = +49 \text{ m}$

Conceptual Example 10 Two Ways to Throw a Stone

From the top of a cliff, a person throws two stones. The stones have identical initial speeds, but stone 1 is thrown downward at some angle above the horizontal and stone 2 is thrown at the same angle below the horizontal. Neglecting air resistance, which stone, if either, strikes the water with greater velocity?



Shoot the Monkey Demonstration



Hit height:
$$y_B = y_M \implies v_{0y}t = h$$

Hit time:
$$t = \frac{x}{v_{0x}}$$

$$\frac{v_{0y}}{v_{0x}} x = h$$

Shoot at the Monkey!

$$\frac{v_{0y}}{v_{0x}} = \frac{h}{x} = \tan \theta$$