
Chapter 9 

Rotational Dynamics 



9.1 The Action of Forces and Torques on Rigid Objects 

According to Newton’s second law, a net force causes an 
object to have a linear acceleration. 

What causes an object to have an angular acceleration? 

Chapter 8 developed the concepts of angular motion. 

  

θ :  angles and radian measure for angular variables
ω :  angular velocity of rotation (same for entire object)
α : angular acceleration (same for entire object)
vT =ωr : tangential velocity
aT =αr : tangential acceleration

TORQUE 



9.1 The Action of Forces and Torques on Rigid Objects 

The amount of torque depends on where and in what direction the  
force is applied, as well as the location of the axis of rotation. 

Maximum rotational effect  
of the force F. 

Smaller rotational effect  
of the force F. 

Rotational effect of the  
force F is minimal; it  
compresses more than  
rotates the bar 



9.1 The Action of Forces and Torques on Rigid Objects 

DEFINITION OF TORQUE 

Magnitude of Torque = (Magnitude of the force) x (Lever arm) 

Direction: The torque is positive when the force tends to produce a  
counterclockwise rotation about the axis. 
SI Unit of Torque: newton x meter (N·m) 

θ

 L

    = Lsinθ
   τ = F = FLsinθ
    

θ  is the angle 
between 


F and L

(Lever arm) 



9.1 The Action of Forces and Torques on Rigid Objects 

   τ = F = FLsinθ     = Lsinθ

θ
θ

 L

  F⊥ = F sinθ

  τ = F⊥L = F sinθ( )(L) = FLsinθ

Alternate (Equivalent) Interpretation 

   

θ  is the angle 
between 


F and L

 Magnitude of Torque = Magnitude of the force( )  ×  Lever arm( )

  Magnitude of Torque = Component of Force ⊥  to L( )  ×  L



9.1 The Action of Forces and Torques on Rigid Objects 

Example 2  The Achilles Tendon 

The tendon exerts a force of magnitude 
720 N.  Determine the torque (magnitude 
and direction) of this force about the  
ankle joint. 

  

τ = F sinθ( )L = (720 N)(sin35°)(.036 m)

= 15.0 N ⋅m  θ = 35°

  

τ = F Lsinθ( ) = (720 N)(.036 m)sin35°

= 15.0 N ⋅m

   

θ  is the angle 
between 


F and L

  L = 0.036 m
  

Example gave angle 55°
between L and .

 

Direction is clockwise (–) around ankle joint
Torque vector τ = −15.0 N ⋅m



9.2 Rigid Objects in Equilibrium 

If a rigid body is in equilibrium, neither its linear motion nor its  
rotational motion changes.   

All equilibrium problems use these equations – no net force 
and no net torque. 



9.2 Rigid Objects in Equilibrium 

EQUILIBRIUM OF A RIGID BODY 

A rigid body is in equilibrium if it has zero translational 
acceleration and zero angular acceleration.  In equilibrium, 
the sum of the externally applied forces is zero, and the 
sum of the externally applied torques is zero. 

Note: constant linear speed or constant rotational speed 
are allowed for an object in equilibrium. 



9.2 Rigid Objects in Equilibrium 

Reasoning Strategy 
1.  Select the object to which the equations for equilibrium are to be applied. 

2.   Draw a free-body diagram that shows all of the external forces acting on the 
object. 

3.  Choose a convenient set of x, y axes and resolve all forces into components 
that lie along these axes. 

4.  Apply the equations that specify the balance of forces at equilibrium.  (Set the  
net force in the x and y directions equal to zero.) 

5.  Select a convenient axis of rotation.  Set the sum of the torques about this 
axis equal to zero. 

6.  Solve the equations for the desired unknown quantities. 



9.2 Rigid Objects in Equilibrium 

Example 3  A Diving Board 

A woman whose weight is 530 N is  
poised at the right end of a diving board 
with length 3.90 m.  The board has 
negligible weight and is supported by 
a fulcrum 1.40 m away from  
the left end. Find the forces that the  
bolt and the fulcrum exert on the board. 

   

τ∑ = 0 = F22 −WW

F2 =W (W 2 ) = 530N(3.9 1.4) = 1480 N

  F1  acts on rotation axis - produces no torque.

  

Fy∑ = 0 = −F1 + F2 −W

F1 = F2 −W = 1480−530( )N = 950 N

 

Counter-clockwise
torque is positive 



9.2 Rigid Objects in Equilibrium 

  Pivot at fulcum: F2  produces no torque.

   

τ∑ = 0 = F12 −W (W − 2 )

F1 =W (W 2 −1) = (530N)(1.8) = 950N

  

Fy∑ = 0 = −F1 + F2 −W

F2 = F1 +W = 950+530( )N = 1480 N

  •

•

 Choice of pivot is arbitary (most convenient)
 

Counter-clockwise
torque is positive 



9.2 Rigid Objects in Equilibrium 

Example 5  Bodybuilding 

The arm is horizontal and weighs 31.0 N.  The deltoid muscle can supply 
1840 N of force.  What is the weight of the heaviest dumbell he can hold? 

 

Counter-clockwise
torque is positive 



9.2 Rigid Objects in Equilibrium 

  

τ∑ = M sin13°( )LM −Wa La −Wd Ld = 0

Wd = +M sin13°( )LM −Wa La
⎡⎣ ⎤⎦ Ld

= 1840N(.225)(0.15m)− 31N(0.28m)⎡⎣ ⎤⎦ 0.62m

= 86.1N

 negative torques

 positive torque



9.3 Center of Gravity 

DEFINITION OF CENTER OF GRAVITY 

The center of gravity of a rigid body is the point at 
which its weight can be considered to act when 
the torque due to the weight is being calculated. 



9.3 Center of Gravity 

When an object has a symmetrical shape and its weight is distributed  
uniformly, the center of gravity lies at its geometrical center. 



9.3 Center of Gravity 

  
xcg =

W1x1 +W2x2

W1 +W2

General Form of xcg 

Center of Gravity, xcg , for 2 masses 

Balance point is under xcg 



9.3 Center of Gravity 

Example 6  The Center of Gravity of an Arm 

The horizontal arm is composed 
of three parts: the upper arm (17 N), 
the lower arm (11 N), and the hand  
(4.2 N). 

Find the center of gravity of the 
arm relative to the shoulder joint. 

  

xcg =
W1x1 +W2x2 +W3x3

W1 +W2 +W3

=
17 0.13( ) +11 0.38( ) + 4.2 0.61( )⎡⎣ ⎤⎦N ⋅m

17 +11+ 4.2( )  N = 0.28 m



9.3 Center of Gravity 

Finding the center of gravity of an irregular shape. 



9.4 Newton’s Second Law for Rotational Motion About a Fixed Axis 

  

τ = FT r
= maT r

= mαr 2

= mr 2( )α
= Iα

Moment of Inertia, I =mr2, for a point-mass, m, at the  
end of a massless arm of length, r.  

  Let I = mr 2

Moment of Inertia 

 τ = Iα
Newton’s  2nd Law for rotations 



9.4 Newton’s Second Law for Rotational Motion About a Fixed Axis 

   

τ1 = m1r1
2( )α

τ 2 = m2r2
2( )α


τ N = mN rN

2( )α

  
τ∑ = mr 2( )∑ α

Net external 
torque 

Moment of  
inertia 

Break object into N  
individual masses 



9.4 Newton’s Second Law for Rotational Motion About a Fixed Axis 

ROTATIONAL ANALOG OF NEWTON’S SECOND LAW FOR 
A RIGID BODY ROTATING ABOUT A FIXED AXIS 

  
I = mr 2( )∑

Requirement: Angular acceleration  
must be expressed in radians/s2. 



9.4 Newton’s Second Law for Rotational Motion About a Fixed Axis 

(a) 

  

I = mr 2( )∑ = m1r1
2 + m2r2

2 = m 0( )2
+ m L( )2

= mL2

  r1 = 0,   r2 = L

(b) 

  

I = mr 2( )∑ = m1r1
2 + m2r2

2 = m L 2( )2
+ m L 2( )2

= 1
2 mL2

Moment of Inertia depends on axis of rotation. 
Two particles each with mass, m, and are fixed at the ends of a  
thin rigid rod.  The length of the rod is L. Find the moment of  
inertia when this object rotates relative to an axis that is  
perpendicular to the rod at (a) one end and (b) the center. 

  
r1 =

L
2

,   r2 =
L
2



9.4 Newton’s Second Law for Rotational Motion About a Fixed Axis 

  I = MR2

  I =
1
2 MR2

  I =
1

12 MR2

  I =
1
3 MR2

  I =
2
5 MR2

  I =
7
5 MR2

  I =
2
3 MR2

  I =
1

12 MR2

  I =
1
3 MR2



9.4 Newton’s Second Law for Rotational Motion About a Fixed Axis 

Example 12  Hoisting a Crate 

The combined moment of inertia of the dual pulley is 50.0 kg·m2.  The  
crate weighs 4420 N.  A tension of 2150 N is maintained in the cable 
attached to the motor.  Find the angular acceleration of the dual 
pulley. 



9.4 Newton’s Second Law for Rotational Motion About a Fixed Axis 

   T2 = m2α + mg = 451(.6)(6.3)+ 4420( )N = 6125 N

 2nd law for linear motion of crate

 2nd law for rotation of the pulley

    


T2
′ = +T2

T2 = −T2

  

I = 46kg ⋅m2

mg = 4420 N
T1 = 2150 N

  
Fy∑ = T2 − mg = may

   

T2 − mg = m2α
T11 −T22 = Iα

T2 = m2α + mg

T2 =
T11 − Iα
2

m2
2α + Iα = T11 − mg2

α =
T11 − mg2

m2
2 + I

= 6.3 rad/s2

   
ay = 2α



9.5 Rotational Work and Energy 

DEFINITION OF ROTATIONAL WORK 

The rotational work done by a constant torque in  
turning an object through an angle is  

Requirement: The angle must 
be expressed in radians.               

SI Unit of Rotational Work: joule (J) 

 

W = Fs s = rθ
= Frθ Fr = τ
= τθ

Work 
rotating 
a mass: 



9.5 Rotational Work and Energy 

  
KE = 1

2 mr 2ω 2( )∑ = 1
2 mr 2∑( )ω 2 = 1

2 Iω 2

  

KE = 1
2 mvT

2

= 1
2 mr 2ω 2

Kinetic Energy of a rotating one point mass 

Kinetic Energy of many rotating point masses 

DEFINITION OF ROTATIONAL KINETIC ENERGY 

The rotational kinetic energy of a rigid rotating object is 

Requirement: The angular speed must 
be expressed in rad/s. 

SI Unit of Rotational Kinetic Energy: joule (J) 



9.5 Rotational Work and Energy 

Example 13  Rolling Cylinders 

A thin-walled hollow cylinder (mass = mh, radius = rh) and 
a solid cylinder (mass = ms, radius = rs) start from rest at 
the top of an incline. 

Determine which cylinder  
has the greatest translational 
speed upon reaching the  
bottom. 



9.5 Rotational Work and Energy 

  E = 1
2 mv2 + 1

2 Iω 2 + mgh

  
1
2 mv f

2 + 1
2 I v2

f r 2 = mghi

ENERGY CONSERVATION 

 
ω f = v f r

Total Energy = Kinetic Energy + Rotational Energy + Potential Energy 

 
E f = Ei

 0  0  0

The cylinder with the smaller moment 
of inertia will have a greater final translational 
speed. 

Same mass for cylinder and hoop 



9.6 Angular Momentum 

DEFINITION OF ANGULAR MOMENTUM 

The angular momentum L of a body rotating about a  
fixed axis is the product of the body’s moment of  
inertia and its angular velocity with respect to that 
axis:  

Requirement: The angular speed must 
be expressed in rad/s. 

SI Unit of Angular Momentum: kg·m2/s 



9.6 Angular Momentum 

PRINCIPLE OF CONSERVATION OF ANGULAR MOMENTUM 

The angular momentum of a system remains constant (is  
conserved) if the net external torque acting on the system  
is zero. 

  

Angular momentum, L
Li = Iiω i; Lf = I fω f

No external torque 
⇒  Angular momentum conserved

Lf = Li

  

I fω f = Iiω i

ω f =
Ii

I f

ω i;
Ii

I f

>1

ω f >ω i  (angular speed increases)
  

I = mr 2∑ ,  rf < ri

I f < Ii

Ii

I f

>1
 

Moment of Inertia
decreases



9.6 Angular Momentum 

 Is Energy conserved?

  

KE f =
1
2 I fω

2
f

= 1
2 I f Ii I f( )2

ω 2
i  

= Ii I f( ) 1
2 Iiω

2
i( ) KEi =

1
2 Iiω

2
i;

= Ii I f( )KEi ⇒ Kinetic Energy increases

 

Energy is not conserved because pulling in the arms does 
(NC) work on their mass and increases the kinetic energy of rotation

  
Ii I f >1

  

From Angular Momentum Conservation

ω f = Ii I f( )ω i  

Angular velocity increases



9.6 Angular Momentum 

Example 15  A Satellite in an Elliptical Orbit 

An artificial satellite is placed in an  
elliptical orbit about the earth.  Its point 
of closest approach is 8.37x106m 
from the center of the earth, and 
its point of greatest distance is  
25.1x106m from the center of 
the earth.The speed of the satellite at the  
perigee is 8450 m/s.  Find the speed 
at the apogee. 

  

Gravitational force along L (no torque)
Angular momentum conserved  

IAωA = IPω P

mrA
2 vA rA( ) = mrP

2 vP rP( )
rAvA = rPvP ⇒ vA = rP rA( )vP = (8.37 ×106 ) / (25.1×106 )⎡⎣ ⎤⎦ 8450 m/s( ) = 2820 m/s

  

IA = mrA
2; IP = mrP

2

ωA = vA rA ; ω P = vP rP


