
Chapter 10 

Simple Harmonic 
Motion and Elasticity 

continued 



10.3 Energy and Simple Harmonic Motion 

A compressed spring can do work. 



10.3 Energy and Simple Harmonic Motion 
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A compressed spring can do work. 



10.3 Energy and Simple Harmonic Motion 

DEFINITION OF ELASTIC POTENTIAL ENERGY 

The elastic potential energy is the energy that a spring 
has by virtue of being stretched or compressed.  For an 
ideal spring, the elastic potential energy is 

SI Unit of Elastic Potential Energy: joule (J)  



10.3 Energy and Simple Harmonic Motion 

Conceptual Example 8  Changing the Mass of a Simple  
Harmonic Oscilator 

The box rests on a horizontal, frictionless 
surface.  The spring is stretched to x=A 
and released.  When the box is passing 
through x=0, a second box of the same 
mass is attached to it.  Discuss what  
happens to the (a) maximum speed 
(b) amplitude (c) angular frequency. 

 

a) When 1st box reaches maximum velocity, 
    second box added at the same velocity

 

In homework, the mass is added
when mass reaches maximum 
displacement, and velocity is zero.



10.3 Energy and Simple Harmonic Motion 

The ball is releasted from  
the unstretched length. 

Example 8  Changing the Mass of a Simple Harmonic Oscilator 

A 0.20-kg ball is attached to a vertical spring.  The spring constant 
is 28 N/m.  When released from rest, how far does the ball fall 
before being brought to a momentary stop by the spring? 

The ball reaches maximum  
speed at the equilibrium  
point. 

The ball reaches maximum  
displacement when the velocity  
reaches zero. 



10.3 Energy and Simple Harmonic Motion 
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Energy Conservation 

CYU: Gravitational potential energy 
converted to elastic potential energy 

After release, only conservative forces act. 



10.4 The Pendulum 

A simple pendulum consists of  
a particle attached to a frictionless 
pivot by a cable of negligible mass. 
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10.7 Elastic Deformation 

Because of these atomic-level “springs”, a material tends to  
return to its initial shape once forces have been removed. 

ATOMS 

FORCES 



10.7 Elastic Deformation 

STRETCHING, COMPRESSION, AND YOUNG’S MODULUS 

Young’s modulus has the units of pressure:  N/m2 

Young’s modulus is a characteristic  
of the material (see table 10.1)   YSteel = 2.0×1011 N/m2



10.7 Elastic Deformation 

Spring Constants and Young’s Modulus 
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Y :  Young's Modulus
A,  L0 :  Area and length of rod
ΔL : Change in rod length (x)



10.7 Elastic Deformation 

 

Note: 1 Pascal (Pa) = 1 N/m2

1 GPa = 1×109  N/m2



10.8 Stress, Strain, and Hooke’s Law 

HOOKE’S LAW FOR STRESS AND STRAIN 

Stress is directly proportional to strain. 

Strain is a unitless quantitiy. 

SI Unit of Stress:  N/m2 

In general the quantity F/A is called the Stress. 

The change in the quantity divided by that quantity is called the Strain: 



10.7 Elastic Deformation 

Example 12  Bone Compression 

In a circus act, a performer supports the combined weight (1080 N) of 
a number of colleagues.  Each thighbone of this performer has a length  
of 0.55 m and an effective cross sectional area of 7.7×10-4 m2.  Determine 
the amount that each thighbone compresses under the extra weight. 
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FLo
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=
540 N( ) 0.55 m( )

9.4×109 N m2( ) 7.7 ×10−4  m2( )
= 4.1×10−5m = 0.041mm

 
each leg = 1080 n
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10.7 Elastic Deformation 

SHEAR DEFORMATION AND THE SHEAR MODULUS 

S: Shear modulus 
Table 10.2 

VOLUME DEFORMATION AND THE BULK MODULUS 

B: Bulk modulus 
Table 10.3 

Pressure  
Change 



Chapter 11 

Fluids 



11.1 Mass Density 

DEFINITION OF MASS DENSITY 

The mass density of a substance is the mass of a  
substance divided by its volume: 

 
ρ = m

V
SI Unit of Mass Density:  kg/m3 



11.1 Mass Density 

Example 1  Blood as a Fraction of Body Weight 

The body of a man whose weight is 690 N contains about 
5.2x10-3 m3 of blood. 

(a) Find the blood’s weight and (b) express it as a  
percentage of the body weight. 

  

m = ρV

(a) W = mg = ρVg = 1060 kg/m3( ) 5.2×10−3  m3( ) 9.80m s2( ) = 54 N

(b) Percentage = 54 N
690 N

×100% = 7.8%



11.2  Pressure 

 
P = F

A

SI Unit of Pressure:  1 N/m2 = 1Pa 
Pascal 

 Pressure = Force per unit Area

 

The same pressure acts inward in
every direction on a small volume. 



11.2  Pressure 

Example 2  The Force on a Swimmer 

Suppose the pressure acting on the back 
of a swimmer’s hand is 1.2x105 Pa.  The 
surface area of the back of the hand is  
8.4x10-3m2. 

(a) Determine the magnitude of the force 
that acts on it. 
(b) Discuss the direction of the force. 

  
Force per unit area: P = F

A
 

  

F = PA = 1.2×105 N m2( ) 8.4×10−3m2( )
= 1.0×103 N

Since the water pushes perpendicularly  
against the back of the hand, the force 
is directed downward in the drawing. 

Pressure on the underside of the hand 
is slightly greater (greater depth). So 
force upward is slight greater - bouyancy 



11.2  Pressure 

Atmospheric Pressure at Sea Level:   1.013x105 Pa = 1 atmosphere 



11.3 Pressure and Depth in a Static Fluid 

  P2 A = P1A+ ρVg

 Equilibrium of a volume of fluid

  with F = PA,  m = ρV
  F2 = F1 + mg

  with V = Ah

  P2 = P1 + ρ gh

  Pressure grows linearly with depth (h)

 Fluid density is ρ



11.3 Pressure and Depth in a Static Fluid 

Conceptual Example 3  The Hoover Dam 

Lake Mead is the largest wholly artificial  
reservoir in the United States.  The water 
in the reservoir backs up behind the dam 
for a considerable distance (120 miles). 

Suppose that all the water in Lake Mead 
were removed except a relatively narrow 
vertical column. 

Would the Hoover Dam still be needed 
to contain the water, or could a much less 
massive structure do the job? 

  Pressure depends only on depth (h)



11.3 Pressure and Depth in a Static Fluid 

Example 4  The Swimming Hole 

Points A and B are located a distance of 5.50 m beneath the surface  
of the water.  Find the pressure at each of these two locations. 

   

P2 = 1.01×105  Pa( )
atmospheric pressure  

+ 1.00×103 kg m3( ) 9.80m s2( ) 5.50 m( )
= 1.55×105  Pa

  P1 = 1.01×105  N/m2
 Atmospheric pressure



11.4 Pressure Gauges 

  

P2 = P1 + ρ gh
0

  

h =
Patm

ρ g
=

1.01×105  Pa( )
13.6×103 kg m3( ) 9.80m s2( )

= 0.760 m = 760 mm of Mercury

 
ρHg = 13.6×103 kg m3



11.5 Pascal’s Principle 

PASCAL’S PRINCIPLE 

Any change in the pressure applied  
to a completely enclosed fluid is transmitted  
undiminished to all parts of the fluid and  
enclosing walls. 



11.5 Pascal’s Principle 



11.5 Pascal’s Principle 

Example 7  A Car Lift 

The input piston has a radius of 0.0120 m 
and the output plunger has a radius of  
0.150 m. 

The combined weight of the car and the  
plunger is 20500 N.  Suppose that the input 
piston has a negligible weight and the bottom 
surfaces of the piston and plunger are at 
the same level.  What is the required input 
force? 

  

F2 = F1

A2

A1

⎛
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= 20500 N( )π 0.0120 m( )2

π 0.150 m( )2 = 131 N



11.6 Archimedes’ Principle 

   

FB = P2 A− P1A = P2 − P1( )A

= ρ ghA
= ρV
mass of
displaced
fluid

 g
  P2 = P1 + ρ gh

 V = hA

 Buoyant Force

 Buoyant force = Weight of displaced fluid



11.6 Archimedes’ Principle 

ARCHIMEDES’ PRINCIPLE 

Any fluid applies a buoyant force to an object that is partially 
or completely immersed in it; the magnitude of the buoyant 
force equals the weight of the fluid that the object displaces: 



11.6 Archimedes’ Principle 

If the object is floating then the  
magnitude of the buoyant force 
is equal to the magnitude of its 
weight. 



11.6 Archimedes’ Principle 

Example 9  A Swimming Raft 

The raft is made of solid square 
pinewood.  Determine whether 
the raft floats in water and if 
so, how much of the raft is beneath 
the surface. 



11.6 Archimedes’ Principle 

  

FB
max = ρVg = ρwaterVwater g

= 1000kg m3( ) 4.8m3( ) 9.80m s2( )
= 47000 N

  
Vraft = 4.0 m( ) 4.0 m( ) 0.30 m( ) = 4.8 m

  

Wraft = mraft g = ρ pineVraft g

= 550kg m3( ) 4.8m3( ) 9.80m s2( )
= 26000 N < 47000 N

The raft floats! 

 Max Buoyant Force

 Raft weight



11.6 Archimedes’ Principle 

  

Wraft = ρwater gVwater

= ρwater g( Awaterh)

h =
Wraft

ρwater gAwater

= 26000N
1000kg m3( ) 9.80m s2( ) 16.0 m2( )

= 0.17 m

  Wraft = FB

If the raft is floating: 


