Newtonian Dynamics

In the next few weeks, we’ll study two chapters
from the textbook,

Thornton and Marion, Classical Dynamics
(5th ed.)

The chapters are

Chapter 2: Newtonian Dynamics for a Single
Particle

Chapter 9: Dynamics for a System of Particles
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Classical dynamics is based on Newton’s three
laws of motion ...

1. An object in motion has constant velocity
if the net force acting on the object is 0.

2. If the net force acting on an object is F,
then the acceleration a is a = F/m.

3. For every action (F) there is an equal but
opposite reaction (-F).

You have already studied some implications in
the notes from Prof. Stump. Now we will learn
some mathematical techniques to apply the
laws of motion.
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Chapter 2 is concerned with Newton’s second
law,

. F e
a=—, 0O F=ma
m

Here m = mass of a particle; F = the force acting
on the particle; and a = the acceleration of the
particle. Force and acceleration are vectors, So
in handwritten equations F and a should be
written with an arrow over the symbol. (For one
dimensional motion, the arrow is usually
omitted.)

Newton’s second law is a differential equation,

—

dv F

dt m

so in Chapter 2 we will be interested in
methods to solve differential equations.
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Chapter 9 is concerned with Newton’s third
law. In a system of particles,

ZFi _ ZFieXt ;

all forces  external
forces

or, equivalently,

Z Fiint — O

internal
forces

These equations are consequences of Newton’s
third law. For example, consider a system of
just 2 particles:

F=F+f and F,=F*-f

where f = the force on m,; due to m,; by
Newton’s third law, the force on m, due to m,
must be -f.

+f and -f are the internal forces, i.e., internal to
the system. They cancel if we calculate the sum
of forces.
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Reading and problem assignments:

*
%* Read Chapter 2 from the
textbook, Thornton and Marion,
Classical Dynamics.

*
*%* Do the LON-CAPA problems
entitled “Homework Set 2a’.
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dv
m -
dt

Dynamics for a single particle
(CHAPTER 2)

Our goal is to solve differential equations with
this form (Newton’s second law)

_ d)—(> m = mass [kg]
—F with —=v v = velocity [m/s]
dt F = force [N]

X = position [m]

Note that x, v, and F are vectors. In
handwritten equations they should be written
with an arrow over the symbol. (For one-
dimensional motion the arrow is usually
omitted.) Also, physical quantities have units
of measurement [kg, m, s, etc] which must be
given in any numerical calculations.

In general the force F may depend on position
X, velocity v, and time t. That is, F would be a
function of all three variables F = F(x, v, t).
However, in most examples F is independent of
some of the variables.
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Three cases for one-dimensional motion
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The equations of motion are m dv/dt = F and
dx/dt = v.

Case 1. F = F(t)

In this case the equation of motion is solved
immediately by integration
dv_F® t F(t')
—=—= implies v(t)-v,= dt'
dt m b B)=Vo J t,m
This is an example of the fundamental theorem
of calculus.

THE FUNDAMENTAL THEOREM OF CALCULUS

oSk = [ = )~ Flx)
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The equations of motion are m dv/dt = F and
dx/dt = v.

Case 2. F = F(v)

In this case the equation of motion is solved by
separation of variables

dav  F(v) . . dv dt
= implies =
dt m F(v) m
Integrate both sides of the equation

J‘V dV' tﬁ . t_to

v F(V) Yt m m
Now, you have to evaluate the integral dv/F(v).
But after that is done, the equation relates v to

t. In principle we then know v(t). The position
is obtained by integrating the velocity

X (t) - X, :jttv(t') dt’
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o velocty motion are m dv/dt = F

Case 3. F = F(x)

In this case the equation of motion is solved by
the method of potential energy.

If F is a conservative force then we can write F(x)=—dU/dx
where U(x) = potential energy, a function of position.

dv F(X) .. dv dx du

= Implies mv—-=v F=—"2"7

dt m dt dt dx
Note then that i(%mvz):_d_u
dt dt

SO %mv2+U = aconstant = E , theenergy.

OK, now write dx _ J_r\/g [E -U(x)]
dt m

and solve this equation by separation of variables

X dx’ 2
I JE—U(X) :i\E(t_tO)

After you do the integral, you will know the relationship
between t and X, depending on the energy E.
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Exercise 1. Suppose the force F is constant.
Then any of the three methods could be used
to determine the motion.

Show how to determine the position x(t) as a
function of time using each method. You must
get the same answer by all three methods!

Exercise 2. A mass m moves in one dimension
X subject to a frictional force F = —y v.

(a) Determine x(t) if the initial position is 0 and
the initial velocity is v,. (b) The particle slows
and eventually comes to rest. Determine the
final position.
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Reading and problem assignments:

C
*%* Read Chapter 2 from the
textbook, Thornton and Marion,
Classical Dynamics.

¢
*%* Do the LON-CAPA problems
entitled “Homework Set 2a”.
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Dynamics of a single particle
Examples with Friction

In this lecture we’ll consider some simple
examples, which we’ll analyze using vectors and
calculus.

ONE. A block on an inclined plane (part 1).

A block is placed on an inclined plane, which has
angle of inclination 6 with respect to the
horizontal. Determine the maximum angle 6 such
that the block will stay put.

|

The maximum angle is arctan p..




TWO. A block on an inclined plane (part 2).

A block is placed on an inclined plane, which has
angle of inclination 6 with respect to the
horizontal. Now suppose the angle is large
enough such that the block slides down the plane.
Determine the acceleration.

E;—a)ﬁ'm; F/ wio ey N = mg o5 O
(w3 =F) Mo = Mg il — f;
Gefpciar 4 febin:  Fp = 4N

]
..

A = g/:wxe — Mg tese

a=¢g(8ind—p,co86)
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THREE. A linear retarding force (part 1) (Example 2.4)

A particle moves in one dimension in a medium with
a linear retarding force, F; = —y v. If the initial velocity
is v, how far will the particle move before it comes to
rest?

The final distance is m v,/y. 3




FOUR. A linear retarding force (part 2) (Example 2.5)

A particle moves in one dimension in a medium with
a linear retarding force, F; = -y v. Also, it is pulled
by a constant force F,. Assume the initial velocity is
0.(A) Determine the velocity as a function of time.

(B) Sketch of graph of v(t), and describe the motion in
detail.
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v(t)="2[ 1-exp(-yt/m) |

FOUR, part B 7/

First sketch a graph of the function v(t).

® The initial velocity is O.

® For small times, we may approximate the velocity by a
Taylor series approximation, and the result is

v(t) zit for yt<<m
m

... the same as if only the constant force were acting.

® In the limit t - oo, the velocity approaches a
constant, F,/y. This is the terminal velocity.

v(t) zi for yt>>m
/4
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Reading and problem assignments:

*
%* Read Chapter 2 from the
textbook, Thornton and Marion,
Classical Dynamics.

*
*%* Do the LON-CAPA problems
entitled “Homework Set 2a” and
“Homework Set 2b”.
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Dynamics of a Single Particle
Conservation Laws
A counservation law is a statement that some
quantity is constant, i.e., conserved.
A conservation law is imporntant because it

places a stvict limitation on the changes that
can occuv in a physical system.

ln mechanics, three consevrvation laws are
often encountered:

> conservation of momentum

> conservation of anqular momentum

> conservation of enerqgy

(n this mini-lecture we'll consider each of these,
forn the dynamics of a single particle.




Counservation of Mowmentume

In the dynamics of a single
particle, the momentam (p) is
defined by p = m v.

Theorem d_p —F
dt

by Newton's second law.

So Newton's second law for a

single particle can be written as

dp/dt = F.

Covollary. For an isolated
pavticle, p i's conserved.

Lroof. For an isolated particle,
the force on the particle is 0;
F=0. Thus dp/dt=0:0n pis
constant. QTD

Comment. In the dynamics of a single
particle, conservation of momentum
is not a very powerful concept. It
applies only to an isolated, free
particle. [It’s just the same as
Newton’s first law of motion --- v is
constant if F = 0.] But in the dynamics
of a system of particles, conservation
of total momentum is a very powerful
concept. (Chapter 9).
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Angular Momentum Cross product of vectors

In the dynamics of a single particle,

-+ -
the angular momentum (L) around a NAXB
fixed point x,is defined by L = » X p
wheve » = x — X, 3z

g

[ If two vectors A and B cross, then they

. . , ) define a plane. The cross product of Aand B,
[ % is the position of the particle: ¥ is | jenoted AxB, is a third vector, perpendicular

the vector from x, to x. lf the fixed to the plane spanned by A and B. The

. . . . direction of A x B is given by the right hand
oint is the ovigin, xo = 0, then » = x.
4 9 0 ¥ ] rule; the magnitude is A B sin g. See Lecture

1d. ]
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Comment. Conservation of angular

momentum will be very important in
orbit calculations (Chapter 7).

(*) The cross product of parallel vectors is always 0.




Conservation of Encrgy

Eunergy is a little more subtle than momentum,
requiring some preliminary definitions.

| T
Work = [(_ =P '42}/@
r

Kinehe I;wra; "‘ELWUZ 2

where U(x) is the potential energy.

Recapitulation. For a conservative force, we write F(x) =—VU
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Theorem 1 IR
(Work - Kinetic Energy) AK = / on O i‘_.:‘ dt ——

AK =W ._._._/(,),,/J')‘(;df) f _

Theorem 2

(Conservation of Energy)

Bof. 46 _ dk | dv.
Ar | [ +t
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=
In the dynamics of a single particle moving under the ||

influence of a conservative force F, K+ U is a constant
of the motion. That is, the total energy is conserved.
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The next lecture will be some
‘w which conservation of

¢ analyze the




