The Atomic Nucleus

Quantum Theory:

We can only describe the electrons in an atom by "probability waves".

Dictionary of Subatomic Particles

Nucleus: The massive and positively charged particle at the center of an atom

Electron: The negatively charged constituent of atoms.

Proton: The positively charged constituent of nuclei.

Neutron: The electrically neutral constituent of nuclei.

particle	Charge	Mass		
Electron	— е	9.109 381 88(72) × 10 ⁻³¹ kilogram		
Proton	+e	1.672 621 58(13) × 10 ⁻²⁷ kilogram		
Neutron	0	1.674 92 x 10 ⁻²⁷ kilogram		

The electron is much lighter than the proton. The neutron is slightly heavier than the proton.

101 - Week 14

How large is the nucleus?

From electron-nucleus scattering, we know that the radius *R* of a nucleus is approximately 100,000 times smaller than the radius of an atom

R ~ 10⁻¹⁵ m

lsotopes

electron cloud and nucleus

Z = atomic number = # electrons

protons and neutrons in the nucleus

Z = atomic number = # protons

A = mass number = # protons + # neutrons

Isotopes

Each nucleus is characterized by 2 numbers:

- Z = number of protons
- A = number of nucleons (protons and neutrons)

Notation for Isotopes

- X = element
- Z = atomic number
- A = mass number = Z + N

Isotopes of Hydrogen • proton • neutron

There exist three isotopes of hydrogen, named hydrogen, deuterium, and tritium.

Tritium is unstable with half-life about 12 years.

Isotopes of Helium • proton • neutron

There exist many isotopes of helium; the most common are He-3 and He-4. Others are unstable.

99.99 % of Helium on Earth is He-4. ¹²

There exist many isotopes of carbon; two examples ...

http://en.wikipedia.org/wiki/Isotopes_of_carbon

Isotopes of Uranium • proton • neutron

There exist many isotopes of uranium; examples ...

	Z	Α	
U-238	92	238	238 92
U-235	92	235	235 92

Some isotopes are unstable. Radioactivity is the decay of unstable isotopes.

$$^{238}_{92}U \rightarrow ^{234}_{90}Th + \alpha$$

half - life = 4.5×10⁹ yr

$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + e + \bar{\nu}$$

half - life = 5730 yr

Decay process $X \rightarrow A + B + C + ...$

Decay process $X \rightarrow A + B + C + ...$

The decay occurs because the mass energy decreases – mass energy gets converted to kinetic energy.

$$E = Mc^2$$

The decay occurs if $M_X > M_A + M_B + M_C + ...$

Amount of energy released =
$$M_{initial} c^2 - M_{final} c^2$$

101 - Week 14

We cannot predict with certainty when an unstable nucleus will decay.

Radioactive decay is a random process like throwing dice.

The half life t is the mean time for one-half of the atoms in a radioactive sample to decay.

$$\frac{N(t)}{N(0)} = \left(\frac{1}{2}\right)^{t/\tau}$$

Dating

"age" =
$$t = \tau \times \frac{\log[N(0)/N(t)]}{\log[2]}$$

Measure N(t)/N(0), i.e., fraction of the unstable isotope that remains at time t. The "age" is the time that has passed since the formation of the sample.

Radiocarbon Dating

Radiocarbon Dating

Carbon-14 is unstable; the half-life is 5730 years. C-14 exists in Earth's atmosphere because it is created in cosmic ray collisions.

Living plants absorb C-14 from atmospheric CO₂. When the plant dies, the C-14 concentration begins to decrease.

Radiocarbon Dating

$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + e + \overline{v}$$

Half - life ≈ 5730 years

measure the number of atoms $t = \tau \frac{\log(N_0/N)}{\log(2)}$ calculate the age

Suppose in a sample of organic material, $N = 0.25 N_0$. How old is the sample?

