
 

RLC Circuits 
 
Note:  Parts marked with * include calculations that you should do before coming to lab. 
 In this lab you will work with an inductor, a capacitor, and a resistor to 
demonstrate concepts of low-pass, bandpass, and high-pass filters, amplitude response, 
phase response, power response, Bode plot, resonance and Q. 
 
Series RLC Circuits 
*1.  Simple filters 
 Figures 1 (a), (b), and (c) show low-pass, bandpass, and high-pass filters.  Write 
the transfer function H() for each of these filters, showing the ratio Vout/Vin  as a 

 

Figure 1: Low-pass (a), bandpass (b) and high-pass (c) filters. 



 

function of the angular frequency  of the input voltage. 
 

*2.  The low-pass filter calculations 
        Show that the low-pass filter in Fig. 1 (a) above has a power response function: 
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 *  Explain why this is a low-pass filter by finding the limits at  = 0 and  = . 
     

*  Does a resonance occur near =0? Explain why yes or why not. 
  

The half-power points are the angular frequencies  where the value of |H()|2 is 
reduced to half the value at resonance. For this circuit, the half power points are  

1 0 2
R
L

   and 2 0 2
R
L

   . 
  

*  The difference between half-power frequencies is the bandwidth of the resonance.                   
The Q of the resonance is equal to the resonance frequency divided by the 
bandwidth.  Show that Q = 0L/R.  
 

3. The low-pass filter experiment 
Set up the series low-pass filter shown below: 

Notice that there is no discrete resistor.  The resistor in this circuit represents the 

resistance of the inductor plus any resistance contributed by the Function Generator.  
Normally the Function Generator has an output impedance of 50 . Verify that this is the 
case by measuring the resistance of the function generator output with a meter while the 
generator is turned on but the output voltage is set to the minimal setting of 10 mVPP. 
Measure the resistance of the inductor, add the value contributed by the Function 
Generator and use this sum in your calculations below. 

Calculate the resonance frequency and further measure it by changing the 
oscillator frequency. You may find it convenient here to attach your DPO probes to both 
the Vin and Vout and to use either “Cursor” or “Measure” functions to assess amplitudes of 
the voltages, their phase difference and frequency. 

Calculate and measure the ratio of input and output voltages at the resonance.  
You should find that the output voltage is greater than the input!   Explain how a passive 
circuit like this can give a voltage gain. Is this a violation of conservation of energy? 

 

Figure 2: Series Low-pass Filter.



 

Using the measured resonance frequency and resistor value, calculate the Q.  
Vary the oscillator frequency to find the half-power frequencies and determine the Q 
from the measurements.  (Note:  By definition, at the half-power frequencies the output 
voltage is smaller than the output at resonance by a factor of 1/√2 .) 

Measure the ratio of input and output voltages for very low frequency, about 1% 
of the value at resonance.  From the transfer function you expect them to be the same.  
Are they?  What is the phase shift at very low frequency? 

4. Reduced Q 
Reduce the Q of the filter by adding a 150  resistor in series with the inductor.   

Measure the resonance frequency.  Do you expect that frequency to be changed?  Is it?  
Calculate and measure the Q for this circuit. 

5. Bode Plot 
Measure the output voltages when the input frequency is 20 kHz and when the input 

frequency is 40 kHz.  Use these measured values to show that the high frequency 
response of the filter decreases at a rate of –12dB per octave, i.e. the output decreases by 
a factor of 4 when the frequency doubles, see the discussion at the end of this write-up. 

Use the oscillator and DPO to measure a Bode plot for this filter.  The first part of the 
Bode plot is the magnitude of the response, expressed in dB as a function of decimal 
logarithm of frequency, at sample frequencies between 10 Hz and 50 kHz.  The second 
part is phase (expressed in degrees or radians) as a function of logarithm of frequency, 10 
Hz to 50 kHz. 

6. Bandpass Filter 
Connect the same components as in Figure 3: 

 
Use the DPO to show that this is a bandpass filter.  Print DPO displays showing input and 
output signals for frequencies below, within and above the transmitted band.  Measure 
the resonance frequency. Compare with the resonance frequency of the low-pass filter 
above.  Measure the Q.  Compare with the Q of the low-pass filter above. 

 

Figure 3: Bandpass Filter.



 

     * Show from the transfer function that the amplitude response at high frequency is –
6dB/ octave, namely the output decreases by a factor of 2 when the frequency doubles.  
Measure the amplitude response at 20 kHz and 40 kHz to check for –6 dB/octave. 

 
7. Parallel RLC Circuits 

 As an example of a parallel circuit, consider the filter Figure 4 and calculate its 
transfer function. 
  Explain why this is a notch filter.  What is the frequency of the notch? 
Use L = 27 mH, C = 0.047 F and R = 150 .  Measure the depth of the notch by 
comparing the response at the bottom of the notch with the response at low or high 
frequency.  Why doesn’t the response actually go to zero at the bottom of the notch?  
Print DPO displays, exhibiting input and output signals, for frequencies below, at and 
above the notch.  
Asymptotic notation 
 A filter can be described by its asymptotic frequency dependence.  Although the 
transfer function may be a complicated complex function of frequency, the asymptotic 
characteristic is simple.  For example, a low-pass filter may have a transfer function that 
is inversely proportional to frequency in the limit of high-frequency. We say then H() % 
-1.  In general H () % n, where n is a negative number for a low-pass filter. 
 In the asymptotic limit, a filter has a gain characteristic of n20 decibels per 
decade (dB/decade). 
 Proof:  The gain characteristic in dB is  
     AdB = 20 dB log10|H()| . 
 If  increases by a factor of 10 (one decade), then the change in gain is  
     AdB = 20 dB log10|H(10)/H()| , 
and this is just  
     AdB = 20 dB log10[10n] = n dB . 
 Similarly, the asymptotic dependence can be given in dB/octave.  Whereas a 
decade stands for a factor of 10 in frequency, an octave stands for a factor of 2 in 
frequency.  If the asymptotic frequency dependence is, again, H() % n , then this is just 
     AdB = 20 dB log10[2

n] > n6 dB . 

 

Figure 4: Parallel or Notch Filter. 


