
Newtonian Dynamicsy

In the next few weeks, we’ll study two chapters t e e t e ee s, e study t o c apte s
from the textbook,

Thornton and Marion, Classical Dynamics
(5th ed.)

The chapters are

Chapter 2: Newtonian Dynamics for a Single 
Particle

Chapter 9: Dynamics for a System of Particles
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Classical dynamics is based on Newton’s three 
laws of motion laws of motion …

1. An object in motion has constant velocity 
if the net force acting on the object is 0.

2 If the net force acting on an object is F  2. If the net force acting on an object is F, 
then the acceleration a is a = F/m.

3. For every action (F) there is an equal but 
opposite reaction (−F).

You have already studied some implications in y p
the notes from Prof. Stump. Now we will learn 
some mathematical techniques to apply the 
laws of motion.
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Ch t  2 i  d ith N t ’  d Chapter 2 is concerned with Newton’s second 
law,
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Here m = mass of a particle; F = the force acting 
on the particle; and a = the acceleration of the on the particle; and a = the acceleration of the 
particle. Force and acceleration are vectors, so 
in handwritten equations F and a should be 
written with an arrow over the symbol. (For one 
dimensional motion  the arrow is usually dimensional motion, the arrow is usually 
omitted.)

Newton’s second law is a differential equation,

m
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so in Chapter 2 we will be interested in 
methods to solve differential equations.
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Chapter 9 is concerned with Newton’s third 
law. In a system of particles,

∑∑ =

forces
external

ext

forces all
;ii FF

∑ =
i t l

int .0
ly,equivalent or,

iF

forces
internal

These equations are consequences of Newton’s 
hi d l  F  l  id    f third law. For example, consider a system of 

just 2 particles:

fFFfFF −=+= ext
22

ext
11     and    2211

where f = the force on m1 due to m2; by 
Newton’s third law, the force on m2 due to m1

must be –f.

+f and –f are the internal forces, i.e., internal to 
the system. They cancel if we calculate the sum 
of forces.
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Reading and problem assignments:Reading and problem assignments:

Read Chapter 2 from theRead Chapter 2 from the 
textbook, Thornton and Marion, 
Classical Dynamics.

Do the LON-CAPA problems 
entitled “Homework Set 2a”.
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Dynamics for a single particle
(CHAPTER 2)

Our goal is to solve differential equations with 
this form (Newton’s second law) this form (Newton s second law) 

v
dt
xd

F
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vd

m
r

rrr

==           with
m = mass [kg]
v = velocity [m/s]
F = force [N]dtdt

Note that x, v, and F are vectors. In 
handwritten equations they should be written 

h h b l (

x = position [m]

with an arrow over the symbol. (For one-
dimensional motion the arrow is usually 
omitted.) Also, physical quantities have units 
of measurement [kg, m, s, etc] which must be 
i  i   i l l l tigiven in any numerical calculations.

In general the force F may depend on position 
x, velocity v, and time t. That is, F would be a 
function of all three variables F = F(x, v, t). 
However, in most examples F is independent of 
some of the variables.
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Three cases for one-dimensional motion

The equations of motion are m dv/dt = F and 
dx/dt = vdx/dt = v.

Case 1. F = F(t)

In this case the equation of motion is solved In this case the equation of motion is solved 
immediately by integration

')'()(       implies       )(
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m
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This is an example of the fundamental theorem 
of calculus.
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The equations of motion are m dv/dt = F and 
d /d   dx/dt = v.

Case 2. F = F(v)

In this case the equation of motion is solved by 
separation of variables

m
dt

F(v)
dv

   
m

F(v)
dt
dv     implies       ==

m
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equation  theof sides both integrate                  
−

== ∫∫ mmF(v ) tv 00

Now, you have to evaluate the integral dv/F(v). 
But after that is done, the equation relates v to 
t. In principle we then know v(t). The position t. In principle we then know v(t). The position 
is obtained by integrating the velocity

∫=−
t
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The equations of 
motion are m dv/dt = F
and dx/dt = v.

Case 3. F = F(x)

In this case the equation of motion is solved by 
the method of potential energy.

If F is a conservative force then we can write F(x)= dU/dx 

    implies       
dx
dU

dt
dx

Fv
dt
dv

   mv
m

F(x)
dt
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−===

If F is a conservative force then we can write F(x)=−dU/dx 
where U(x) = potential energy, a function of position.

( )
        energy theconstanta     so

 that    thenNote

2
2
1

2
2
1

.  E ,   U mv
dt
dU

mv
dt
d

dxdtdtmdt

==+

−=

2

[ ]

variablesofseparationbyequationsolveand

)(2     now write OK,   xUE
mdt

dx
−±=

this

( )0
2

)'(
'   

variablesof separationby equationsolve and   

0

tt
mxUE

dxx

x
−±=

−∫

this

After you do the integral  you will know the relationship 
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between t and x, depending on the energy E.



Exercise 1. Suppose the force F is constant. 
Then any of the three methods could be used 

d i h ito determine the motion.

Show how to determine the position x(t) as a 
function of time using each method. You must 
get the same answer by all three methods!g y

Exercise 2. A mass m moves in one dimension 
x subject to a frictional force F = − γ v.

( ) D t i (t) if th i iti l iti i 0 d(a) Determine x(t) if the initial position is 0 and 
the initial velocity is v0. (b) The particle slows 
and eventually comes to rest. Determine the 
final position.
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Reading and problem assignments:

R d Ch t 2 f thRead Chapter 2 from the 
textbook, Thornton and Marion, 
Classical Dynamics.

Do the LON-CAPA problems 
entitled “Homework Set 2a”entitled Homework Set 2a .
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Dynamics of a single particle
Examples with Friction

In this lecture we’ll consider some simple 
examples, which we’ll analyze using vectors and 
calculus.
ONE. A block on an inclined plane (part 1).ONE. A block on an inclined plane (part 1).
A block is placed on an inclined plane, which has 
angle of inclination θ with respect to the 
horizontal. Determine the maximum angle θ such 
that the block will stay putthat the block will stay put.

Lecture 2-3 1The maximum angle is arctan μs.



TWO. A block on an inclined plane (part 2).
A block is placed on an inclined plane, which has 
angle of inclination θ with respect to the angle of inclination θ with respect to the 
horizontal. Now suppose the angle is large 
enough such that the block slides down the plane. 
Determine the acceleration.

a  =  g ( sin θ − μk cos θ )
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THREE. A linear retarding force (part 1)  (Example 2.4)
A particle moves in one dimension in a medium with 
a linear retarding force  F = γ v  If the initial velocity a linear retarding force, FR = − γ v. If the initial velocity 
is v0, how far will the particle move before it comes to 
rest?

Lecture 2-3 3The final distance is    m v0/γ .



FOUR. A linear retarding force (part 2)  (Example 2.5)
A particle moves in one dimension in a medium with 
a linear retarding force   F = γ v   Also  it is pulled a linear retarding force,  FR = − γ v.  Also, it is pulled 
by a constant force F0. Assume the initial velocity is 
0.(A) Determine the velocity as a function of time.
(B) Sketch of graph of v(t), and describe the motion in 
detail.
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FOUR, part B
[ ])/exp(1)( 0 mt

F
tv γ
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First sketch a graph of the function v(t).

The initial velocity is 0.

ll h l bFor small times, we may approximate the velocity by a 
Taylor series approximation, and the result is

mtγt
F

tv <<≈ for)( 0

… the same as if only the constant force were acting.

In the limit t →  ∞  the velocity approaches a 

mtγt
m

tv <<for          )(

In the limit t →  ∞ , the velocity approaches a 
constant,  F0/γ.  This is the terminal velocity.

mtγ
F

tv >>≈ for          )( 0
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Reading and problem assignments:

Read Chapter 2 from the 
textbook, Thornton and Marion, 
Classical Dynamics.y

Do the LON-CAPA problems 
entitled “Homework Set 2a” and 
“Homework Set 2b”.
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Dynamics of a Single Particle

Conservation Laws

A conservation law is a statement that some 
quantity is constant, i.e., conserved.q y
A conservation law is important because it 
places  a strict limitation on the changes that 
can occur in a physical systemcan occur in a physical system.

In mechanics, three conservation laws are 
often encountered:

conservation of momentum

   conservation of angular momentum

conservation of energy

In this mini-lecture we’ll consider each of these, 
for the dynamics of a single particle.
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Conservation of Momentum Corollary. For an isolated 
ti l  i  d                 

In the dynamics of  a single 
particle, the momentum (p) is 
d fi d b     

particle, p is conserved.                

Proof. For an isolated particle, 
defined by p = m v.

Theorem Fp
=

dt
d

the force on the particle is 0; 

F = 0.  Thus dp/dt = 0; or, p is 

Proof.

dt

vp dd

p p

constant.            QED

Comment. In the dynamics of a single 
particle, conservation of momentum 
is not a very powerful concept. It 

b  N t ’  d l

,Favp
=== m

dt
d

m
dt
d

applies only to an isolated, free 
particle. [It’s just the same as 
Newton’s first law of motion --- v is 
constant if F = 0 ] But in the dynamics 

by Newton’s second law.

So Newton’s second law for a 
i l  ti l   b  itt   constant if F = 0.] But in the dynamics 

of a system of particles, conservation 
of total momentum is a very powerful 
concept. (Chapter 9).

single particle can be written as 
dp/dt = F.
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Angular Momentum

In the dynamics of  a single particle, 

Cross product of vectors

In he dynamics of a sing e par ic e,
the angular momentum (L) around a 
fixed point x0 is defined by L = r × p

h    where r = x – x0.

[ x is the position of the particle; r is 

[ If two vectors A and B cross, then they 
define a plane. The cross product of A and B , 
denoted A x B, is a third vector, perpendicular 

the vector from x0 to x. If the fixed 
point is the origin, xo = 0, then r = x. ]

to the plane spanned by A and B. The 
direction of A x B is given by the right hand 
rule; the magnitude is A B sin q. See Lecture 
1d ]
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Conservation of Angular Momentum

In the dynamics of  a single particle, the 
l  t  (L) d  fi d angular momentum (L) around a fixed 

point x0 is defined by L = r × p where r = x
– x0.

LdTheorem. FrL ×=
dt
d

Note: r x F = the 

Proof. Corollary. For a central force, L is 
conserved.                

torque about x0.

( )pr
dt
d

dt
dL ×= conserved.                

Proof. A “central force” means a force on 
m directed toward or away from the 
fixed point x0. For a central force, F and Frpv

dt
dprp

dt
dr
dtdt

×+×=

×+×=

But v × p = m v × v = 0.  (*)

fixed point x0. For a central force, F and 
r are parallel (or anti-parallel) so
r × F = 0.
Then dL/dt = 0; or, L is constant.

QED
Then dL/dt  0; or, L is constant.

Comment. Conservation of angular 
momentum will be very important in 
orbit calculations (Chapter 7)

321 - 2d 4(*)  The cross product of parallel vectors is always 0.

orbit calculations (Chapter 7).



Conservation of Energy
E  i   littl   btl  th  t  Energy is a little more subtle than momentum, 
requiring some preliminary definitions.

Recapitulation. For a conservative force, we write F(x) =   ∇U 
where U(x) is the potential energy.
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Theorem 1
Work – Kinetic Energy

ΔK   W

Theorem 2Theorem 2
Conservation of Energy

In the dynamics of a single particle moving under the 
influence of a conservative force F,   K   U is a constant 
of the motion. That is, the total energy is conserved.
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