Classical Dynamics for a System of Particles (Chapter 9) Momentum and the Center of Mass

- Toss a small pebble. It will follow a parabolic trajectory, as shown.

The momentum is, by definition, $\mathbf{p}=\mathrm{m} \mathbf{v}$.
The x component is constant,

$$
\mathrm{p}_{\mathrm{x}}=\mathrm{mv}_{0} \cos \theta ;
$$

the y component decreases at the rate -mg ,

$$
\mathrm{p}_{\mathrm{y}}=\mathrm{mv}_{0} \sin \theta-\mathrm{mgt} .
$$

The momentum vector is

$$
\begin{equation*}
\mathbf{p}(\mathrm{t})=\mathrm{p}_{0 \mathrm{x}} \mathbf{i}+\left(\mathrm{p}_{0 \mathrm{y}}-\mathrm{mg} \mathrm{t}\right) \mathbf{j} ; \tag{1}
\end{equation*}
$$

it is consistent with Newton's second law,

$$
\begin{equation*}
\mathrm{d} \mathbf{p} / \mathrm{dt}=-\operatorname{mg} \mathbf{j} \quad \text { (the weight) } \tag{2}
\end{equation*}
$$

All this is a familiar example of single-particle dynamics.

- Now toss a handful of small pebbles.

Each pebble will probably move independently. (Two pebbles could hit each other as they move, but that would be unlikely; we'll ignore that possibility.) Then we can write the momentum of the i-th pebble as

$$
\mathbf{p}_{\mathbf{i}}(\mathrm{t})=\mathrm{p}_{0 \mathrm{ix}} \mathbf{i}+\left(\mathrm{p}_{0 \mathrm{iy}}-\mathrm{m}_{\mathrm{i}} \mathrm{~g} \mathrm{t}\right) \mathbf{j},
$$

consistent with Newton's second law,

$$
\mathrm{d} \mathbf{p}_{\mathrm{i}} / \mathrm{dt}=-\mathrm{m}_{\mathrm{i}} \mathrm{~g} \mathbf{j} \quad \text { (the weight of pebble \#i) }
$$

We know the complete dynamics of the system because the motions of the pebbles are independent

The total momentum is defined by

$$
\mathbf{P}(\mathrm{t})=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathbf{p}_{\mathrm{i}}(\mathrm{t})
$$

by the complete dynamics,

$$
\begin{equation*}
\mathbf{P}(\mathrm{t})=\mathrm{P}_{0 \mathrm{x}} \boldsymbol{i}+\left(\mathrm{P}_{0 \mathrm{y}}-\mathrm{Mg}\right) \boldsymbol{j} \tag{3}
\end{equation*}
$$

where \mathbf{P}_{0} is the initial momentum and M is the total mass, $\mathrm{M}=\Sigma \mathrm{m}_{\mathrm{i}}$. Compare equations (3) and (1). You should see that the total momentum of the N pebbles is mathematically the same as if there were only one large pebble with mass M.

The center of mass is the "average position of the system of particles, weighted by their masses."
That is,

$$
\begin{aligned}
& \mathbf{X}(\mathrm{t})=\frac{\sum_{\mathrm{i}=1}^{N} m_{\mathrm{i}} \mathbf{x}_{i}(t)}{\sum_{i=1}^{N} m_{i}} \\
& \text { or, } \quad \mathbf{X}(\mathrm{t})=\frac{1}{M}\left[m_{1} \mathbf{x}_{1}+m_{2} \mathbf{x}_{2}+m_{3} \mathbf{x}_{3}+\cdots m_{N} \mathbf{x}_{N}\right]
\end{aligned}
$$

An important theorem relates the total momentum and center of mass:

$$
\begin{equation*}
\mathbf{P}=\mathrm{M} \mathbf{V} \quad \text { where } \quad \mathbf{V}=\frac{\mathrm{d} \mathbf{X}}{\mathrm{dt}} \tag{4}
\end{equation*}
$$

Here's the proof ...
The center q man hositim 5

$$
\vec{X}=\frac{1}{M}\left\{m_{1} \vec{x}_{1}+m_{2} \vec{x}_{2}+m_{3} \vec{x}_{3}+\ldots+m_{N} \vec{x}_{N}\right\}
$$

The center \& man velocits is

$$
\begin{aligned}
\vec{V} & =\frac{d \vec{x}}{d t}=\frac{1}{M}\left\{m_{1} \frac{d \vec{x}_{x}}{d t}+m_{2} \frac{d x_{2}}{d t}+\cdots+m_{N} \frac{d \vec{x}_{N}}{d t_{N}}\right\} \\
& =\frac{1}{M}\left\{\vec{p}_{1}+\vec{p}_{2}+\vec{b}_{3}+\cdots+\vec{p}_{N}\right\} \\
& =\frac{1}{M} \vec{p} \quad \text { (total momentum). }
\end{aligned}
$$

Thus

$$
\begin{array}{r}
\vec{P}=M \vec{V} \text { ulcer } \vec{V}=\frac{d \vec{x}}{d t} \\
\underline{Q \cdot E \cdot D}
\end{array}
$$

- Now toss a handful of

 strongly-interacting pebbles. Suppose that some pebbles are tied together by strings. Suppose that some pebbles are connected by springs, initially stretched or compressed. You are not now tossing a set of N independent particles, but a big blob of pebbles that are exerting forces on each other.

But we can determine the total momentum $\mathbf{P}(\mathbf{t})$ and the center of mass trajectory $\mathbf{X}(\mathbf{t})$. The remarkable result is that the total momentum and the center of mass trajectory are exactly the same as if the pebbles were not exerting forces on each other:

$$
\begin{align*}
\mathbf{P}(\mathrm{t}) & =\mathrm{P}_{0 \mathrm{x}} \hat{\mathbf{i}}+\left(\mathrm{P}_{0 y}-\mathrm{Mgt}\right) \hat{\mathbf{j}} \tag{5}\\
\frac{\mathrm{d} \mathbf{X}}{\mathrm{dt}} & =\frac{\mathbf{P}(\mathrm{t})}{\mathrm{M}} \tag{6}
\end{align*}
$$

Note that equations (5) and (6) (for strongly interacting particles) are the same as equations (3) and (4) (for noninteracting particles). Why are the total momentum and center of mass independent of the internal forces in the system of particles?

Proof of equation (5)

Total momentum $\quad \vec{P}=\sum_{i=1}^{N} \vec{p}_{i}$
Cunsiler the derivative,

$$
\frac{d \vec{P}}{d t}=\sum_{i=1}^{N} \frac{d \vec{p}_{i}}{d t}=\sum_{i=1}^{N} \vec{F}_{i}
$$

Newton's secund law

- $\vec{F}_{z^{\prime}}=\vec{F}_{i^{\prime}} e_{x t}+\sum_{j=1}^{N} \vec{f}_{i_{j}}$.
hae $\vec{F}_{i} e_{x t}=-m_{i} \cdot g \hat{j}$
and $\vec{f}_{i j}=$ the froe on maw i due to the interaction $\&$ masses i and j
So

$$
\begin{aligned}
& \sum_{i=1}^{N} \vec{F}_{i}=\underbrace{\sum_{i=1}^{N} \vec{F}_{i} \operatorname{ext}^{x}}+\underbrace{\sum_{i=1}^{N} \sum_{j=1}^{N} \vec{f}_{i j}} \\
& =0 \mathrm{by} \\
& \text { (} M=\text { total mass) weston's thaind ow } \\
& \pi
\end{aligned}
$$

Result idea for analyzing the

$$
\frac{d \vec{P}}{d t}=\vec{F}_{e_{x t}}=-M g \hat{\jmath}
$$ dynamist of a system q particles.

$$
\begin{array}{r}
\therefore \vec{P}(t)=P_{0 x} \hat{\imath}+\left(P_{0 y}-M g t\right) \hat{\jmath} \\
\frac{Q, E, D}{\xi} .
\end{array}
$$

Proof of equation (6)

The center q man position is

$$
\vec{X}=\frac{1}{M}\left\{m_{1} \vec{x}_{1}+m_{2} \vec{x}_{2}+m_{3} \vec{x}_{3}+\ldots+m_{N} \vec{x}_{N}\right\}
$$

The center \& man velocity is

$$
\begin{aligned}
\vec{V} & =\frac{d \vec{x}}{d t}=\frac{1}{M}\left\{m_{1} \frac{d \vec{x}_{1}}{d t}+u_{2} \frac{l \vec{x}_{2}}{d t}+\cdots+m_{N} \frac{d \vec{x}_{N}}{d t}\right\} \\
& =\frac{1}{M}\left\{\vec{p}_{1}+\vec{p}_{2}+\vec{b}_{3}+\cdots+\vec{p}_{N}\right\} \\
& =\frac{1}{M} \vec{p} \quad \text { (total momentum). }
\end{aligned}
$$

Thus

$$
\vec{P}=M \vec{V} \quad \text { alae } \quad \vec{V}=\frac{d \vec{x}}{d t}
$$

$\frac{\text { Q.E.D. }}{3}$

These examples - the non-interacting pebbles and the blob of strongly interacting pebbles - illustrate something important about the dynamics of a system of particles. Questions about the total momentum and center of mass may have simple answers, independent of complicated internal dynamics.

Exercise: Prove generally, i.e., for any system of particles
\ldots where $\mathrm{M}=$ the total mass, $\mathbf{P}=$ the total momentum, $\mathbf{V}=\mathrm{dX} / \mathrm{dt}=$ velocity of the center of mass point, and $\mathbf{F e x t}^{\text {ext the sum of all external }}$ forces.

Reading and problem assignments:

 Read Chapter 9 from the textbook, Thornton and Marion, Classical Dynamics.Do the LON-CAPA problems entitled "Homework Set 3a".

Classical Dynamics for a System of Particles (Chapter 9)
The two-body problem
Here's an interesting fact ---
The dynamics of an isolated system of two particles is equivalent to the dynamics of a single particle.

So we can always solve the 2-body problem it reduces to a 1-body problem.

The equations of motion are

$$
\begin{array}{lll}
m_{1} \frac{d \vec{v}_{1}}{d t}=\vec{F}_{1} & \vec{F}_{1}=\vec{F}_{1}{ }^{\text {ext }}+\vec{f} \\
m_{2} \frac{d \vec{v}_{2}}{d t}=\vec{F}_{2} & \text { and } & \vec{F}_{2}=\vec{F}_{2}^{\text {ext }}-\vec{f}
\end{array}
$$

For an isolated system, the external forces would be 0 ,

$$
\vec{F}_{1} \text { ext }=0 \quad \text { and } \quad \vec{F}_{2}^{\text {ext }}=0 . \quad\binom{\text { isolated }}{\text { system }}
$$

In the case of cm isolated system, we can reduce the two diffenatiol equations to a single diffoential guratim ($=$ the equivalent 1-body problem).

Masses m_{1} and m_{2} have position vectors \mathbf{x}_{1} and \mathbf{x}_{2}, respectively. The center of mass position is \mathbf{X}; the relative vector is \mathbf{r}.

Separation of CM motion and relative motion
$m_{1} \frac{d \vec{v}_{1}}{d t}=\vec{f}$ where $\vec{v}_{1}=\frac{d \vec{x}_{1}}{d t}$
$u_{2} \frac{d \vec{v}_{2}}{d t}=-\vec{f}$ where $\vec{v}_{2}=\frac{d \vec{x}_{1}}{d t}$
Well. now -separate the center of man (CM) motion and relative motion.

Masses m_{1} and m_{2} have position vectors \mathbf{x}_{1} and \mathbf{x}_{2}, respectively. The center of mass position is \mathbf{X}; the relative vector is r.

The center of mar and relative vectors ore defined in the FIGURE; that is,

$$
\begin{align*}
\vec{X} & =\frac{m_{1} \vec{x}_{1}+m_{2} \vec{x}_{2}}{m_{1}+m_{2}} \tag{3}\\
\vec{r} & =\vec{x}_{1}-\vec{x}_{2} \tag{4}
\end{align*}
$$

Or, we may express the particle position rectors in terms of $\overrightarrow{\bar{X}}$ and \vec{r}

$$
\begin{align*}
& \vec{x}_{1}=\vec{X}+\frac{m_{2}}{M} \vec{r} \tag{5}\\
& \vec{x}_{2}=\vec{X}-\frac{m_{1}}{M} \vec{r} \tag{6}
\end{align*}
$$

Please verify that equations (3) and (4) follow from equations (5) and (6).

Motion of the center of man point

$$
\left\{\begin{array}{c}
M \underline{\vec{x}}=m_{1} \overrightarrow{x_{1}}+m_{2} \vec{x}_{2} \\
M \vec{V}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}=\vec{p}_{1}+\vec{v}_{2}=\vec{P} \\
\left(\vec{V}=\frac{d \vec{W}}{d t},\right. \text { etc) }
\end{array}\right.
$$

Theorem The total momentum is constant, because of Newton's third law:
Prof $\vec{P}=\overrightarrow{p_{1}}+\overrightarrow{p_{2}}$

$$
\frac{d \vec{p}}{d t}=\frac{d \overrightarrow{p_{1}}}{d t}+\frac{d \overrightarrow{p_{2}}}{d t}=\vec{f}-\vec{f}=0 .
$$

$\therefore \vec{P}$ is constant, QED
Theorem The center of $m \mathrm{~m}$ point moves wite constant velocity.
Prof $\vec{P}=M \vec{V}$ alan $M=m_{1}$ tom 2.
\vec{P} is curstrant, so \vec{V} is constant. QED

So the motion of the center of mass is constant velocity: $\quad \mathbf{X}(\mathrm{t})=\mathbf{V} t \quad$ and $\quad \mathbf{V}=\mathbf{P} / \mathrm{M}$.

The relative motion
Define $\vec{v}=\frac{d \vec{r}}{d t}$

RELATVE VECTOR

$$
\vec{r}=\vec{x}_{1}-\vec{x}_{2}
$$

Theorem $\quad \mu \frac{d \vec{v}}{d t}=\vec{f}$ whee μ is the reduced mass.

Pref $\vec{v}=\frac{d \vec{r}}{d t}=\frac{d \vec{x}_{1}}{d t}-\frac{d \vec{x}_{2}}{d t}=\vec{v}_{1}-\vec{v}_{2}$

$$
\frac{d \vec{v}}{d t}=\frac{d \vec{v}}{d t}-\frac{d \vec{v}_{2}}{d t}=\frac{\vec{f}}{m_{1}}-\frac{-\vec{f}}{m_{2}}=\frac{\vec{f}}{\mu}
$$

where $\frac{1}{\mu_{1}}=\frac{1}{m_{1}}+\frac{1}{m_{2}}$ or $\mu=\frac{m_{1} m_{2}}{m_{1} \tan 2}$

Reduction of the isolated 2-body problem
to an efuralent 1-body problem

$$
\vec{x}_{1}=\vec{\nabla}+\frac{m_{2}}{M} \vec{r} \quad \text { and } \quad \vec{x}_{2}=\vec{X}-\frac{m_{1}}{M} \vec{r}
$$

How $\overrightarrow{\bar{X}}(t)=\vec{X}_{0}+\vec{V}_{0} t$
and $\mu \frac{d^{2} \vec{r}}{d t^{2}}=\vec{f}$
Solve $\mu \stackrel{\ddot{r}}{\vec{r}}=\stackrel{\stackrel{\rightharpoonup}{f}}{\text {; }}$; then $\vec{x}_{1} \& \vec{x}_{2}$ are known.

The lecture will continue witt 2 examples.
Example 1 Diatomic Oscillator

Example 2 Binary Star System

Example 1. Diatomic oscillator

Equations of motion

$$
\begin{aligned}
& m_{1} \ddot{x}_{1}=F=-k\left(x_{1}-x_{2}-l\right) \\
& x_{2} \ddot{x}_{2}=-F=K\left(x_{1}-x_{2}-l\right)
\end{aligned}
$$

The quivalent 1 -body problem ($r=x_{1}-x_{2}$)
$r:$ distance between the masks

$$
\mu \ddot{r}=F=-k(r-l)
$$

Let $r=l+\epsilon(t)$; then $\mu \epsilon^{\prime \prime}=-k \epsilon$
$\epsilon(t)=A \cos \omega t$ who $\omega^{2}=\frac{k}{m}$
Result The frequency is $f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k\left(m_{1}+m_{2}\right)}{m_{1} \cdot m_{2}}}
$$

Examples - If $m_{1}=m_{2}=m$ then $f=\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}$

- If $m_{2} \gg m_{1}$ then $f \approx \frac{1}{2 \pi} \sqrt{\frac{k}{m_{1}}}$

Comment Consider the frame of reference where CM is at rest at $x=0$.

$$
\begin{align*}
x_{1}=Z+\frac{m_{2}}{M} r & =\frac{m_{2}}{M} r \text { so } x_{1}=\frac{m_{2}}{M}(l+\epsilon) \\
\therefore m_{1} \ddot{x}_{1} & =\frac{m_{1} m_{2}}{M}\left(\frac{-k}{M} \epsilon\right)=-k(r-l) \\
& =-k\left(x_{1}-x_{2}-l\right) \text { as required - } \tag{7}
\end{align*}
$$

Example: Binany Star System wite Circular orbits

Use the frame of reference where the CM point is at rest at $(0,0)$.

$$
\begin{aligned}
& \vec{x}_{1}=\vec{X}+\frac{m_{2}}{m^{2}} \vec{r}=\frac{m_{2}}{M} \vec{r} \\
& \vec{x}_{2}=\bar{X}-\frac{m_{1}}{m} \vec{r}=-\frac{m_{1}}{M} \vec{r}
\end{aligned}
$$

The stars revolve asomel the center of mass point on arcalar alits wit radii $R_{1}=\frac{m_{2}}{M} r$ and $R_{2}=\frac{m_{1} r}{M} r$; and r is the distance between the s tors, $=R_{1}+R_{2}$.

The equitant 1-body problem

$$
\mu \ddot{\vec{r}}=\vec{f} \quad \Rightarrow \quad \mu \ddot{\vec{r}}=-\frac{G m_{1} m_{2}}{r^{2}} \hat{r}
$$

The imaginary particle (μ) undergoes uniform circular motion wite radius r, so

$$
\begin{aligned}
& \mu \frac{v^{2}}{r}=\frac{G m_{1} m_{2}}{r^{2}} \\
\therefore & v=\sqrt{\frac{G\left(m_{1}+m_{2}\right)}{r}} \text { and } T=\frac{2 \pi r}{v}=\sqrt{\frac{4 \pi^{2} r^{3}}{G\left(m_{1}+m_{2}\right)}}
\end{aligned}
$$

Dynamics - Systems of Particles

3c - Collisions

In everyday life, we normally think of a collision as an event in which two objects hit each other. In physics the word is used in a more general way. A collision is an event in which:
\square Two objects move together, experience equal but opposite forces, and accelerate in response to those forces.
\square When the two objects are far apart, they move freely, i.e., with constant velocity.

$$
\begin{aligned}
& \checkmark \text { Total momentum is conserved. You should be able to prove } \\
& \text { that } \ldots \quad m_{1} \mathbf{v}_{1}+m_{2} \mathbf{v}_{2}=m_{1} \mathbf{v}_{1}^{\prime}+\mathrm{m}_{2} \mathbf{v}_{2}^{\prime}, \\
& \text { because of Newton's third law. } \\
& \checkmark \quad \text { The center of mass point moves with constant velocity, } \\
& \quad \mathbf{V}=\mathbf{P} / \mathrm{M}=\text { constant ; } \\
& \text { again, you should be able to prove that } \mathbf{V}=\mathbf{P} / \mathrm{M} .
\end{aligned}
$$

The LAB frame and the CENTER of MASS frame

The LAB frame is the frame of reference in which the first particle is the projectile and the second particle is the target, which is initially at rest.

$$
\begin{aligned}
& \vec{v}_{2 L}=0 \\
& \vec{P}_{L}=m_{1} \vec{v}_{1 L} \\
& \vec{v}_{L}=\frac{m_{1} \vec{v}_{L L}}{m_{1}+m_{2}}
\end{aligned}
$$

The CENTER of MASS frame is the frame of reference in which the center of mass of the two particles is at rest.

$$
\begin{aligned}
& m_{1} \vec{v}_{i c}+m_{2} \vec{v}_{2 c}=0 \\
& \vec{P}_{c}=0 \\
& \vec{v}_{c}=0
\end{aligned}
$$

LAB \Leftrightarrow CM transformations

$$
\begin{aligned}
& \mathbf{v}_{1 \mathrm{c}}=\mathbf{v}_{1 \mathrm{~L}}-\mathbf{V}_{\mathrm{L}}=\frac{m_{2}}{m_{1}+m_{2}} \mathbf{v}_{1 \mathrm{~L}} \\
& \mathbf{v}_{2 \mathrm{c}}=\mathbf{v}_{2 \mathrm{~L}}-\mathbf{V}_{\mathrm{L}}=\frac{-\mathrm{m}_{1}}{m_{1}+m_{2}} \mathbf{v}_{1 \mathrm{~L}}
\end{aligned}
$$

Totally Inelastic Collisions

A totally inelastic collision is a collision in which the two particles stick together after the collision.

- Total momentum is conserved.

Total kinetic energy is not conserved.
Example. Consider a totally inelastic collision with the target initially at rest.

N. B. The scattering angle is necessarily 0 in a totally inelastic collision. 2

Momentum is conserved, so $m_{1} v_{1}=\left(m_{1}+m_{2}\right) v^{\prime}$

$$
v^{\prime}=\frac{m_{1} v_{1}}{m_{1}+m_{2}}
$$

Exercise: Show that the change of kinetic energy is

$$
\frac{\Delta K}{K_{i n}}=\frac{-m_{2}}{m_{1}+m_{2}}
$$

Totally Elastic Collisions

A totally elastic collision is a collision in which the total kinetic energy is conserved.

- Total momentum is conserved.
\square Total kinetic energy is conserved.
Example. Consider a totally elastic collision in one dimension, with the target initially at rest.

$$
\begin{aligned}
m_{1} v_{1} & =m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime} \\
\frac{1}{2} m_{1} v_{1}^{2} & =\frac{1}{2} m_{1} v_{1}^{\prime 2}+\frac{1}{2} m_{2} v_{2}^{\prime 2}
\end{aligned}
$$

Algebra: Please solve the equations for the final velocities, v_{1} ' and v_{2} '.
Results:

Before

After

$$
\boldsymbol{v}_{1}^{\prime}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1} \quad \text { and } \quad \boldsymbol{v}_{2}^{\prime}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1}
$$

Exercises:

(1) Describe the final state if (a) $\mathrm{m}_{1}<\mathrm{m}_{2}$;
(b) $m_{1}=m_{2}$;
(c) $m_{1}>m_{2}$.
(2) What happens if $m_{1} \ll m_{2}$; what if $m_{1} \gg m_{2}$?
(3) Suppose a car is traveling at 30 mph ; you toss a ping pong ball in front of the car; and the windshield hits the ping pong ball. How fast will the ping pong ball be moving after the collision?

Example. A totally elastic collision in two dimensions (lab frame)

Conservation laws:
$P_{x}=m_{1} v_{1}=m_{1} v_{1}{ }^{\prime} \cos \theta_{1}+m_{2} v_{2}{ }^{\prime} \cos \theta_{2}$
$P_{y}=0=m_{1} v_{1} ' \sin \theta_{1}-m_{2} v_{2} ' \sin \theta_{2}$
$K=\frac{1}{2} m_{1} v_{1}^{2}=\frac{1}{2} m_{1} v_{1}^{\prime 2}+\frac{1}{2} m_{2} \dot{v}_{2}^{2}$
E.g., given v_{1} and $\theta_{1} \ldots$ calculate $\mathrm{v}_{1}{ }^{\prime}$, $v_{2}{ }^{\prime}$, and θ_{2}.

Example: Suppose $m_{1}=m_{2}$ in a totally elastic collision. Show that the angle between the final velocities is 90 degrees.

Solution: The masses are equal so the conservation of momentum is $\ldots \quad \boldsymbol{v}_{\boldsymbol{1}}=\boldsymbol{v}_{\boldsymbol{1}}{ }^{\prime}+\boldsymbol{v}_{\mathbf{2}}{ }^{\boldsymbol{\prime}}$.

Thus, $\quad \boldsymbol{v}_{1}{ }^{2}=\boldsymbol{v}_{1}{ }^{2}+\boldsymbol{v}_{2}{ }^{2}+2 v_{1}{ }^{\prime}+v_{2}{ }^{\prime}$
But conservation of kinetic energy implies $\boldsymbol{v}_{\boldsymbol{1}}{ }^{2}=\boldsymbol{v}_{\boldsymbol{1}}{ }^{\mathbf{2}}+\boldsymbol{v}_{\mathbf{2}}{ }^{\mathbf{2}}$.
Thus, $\boldsymbol{v}_{\mathbf{1}}{ }^{\prime} * \boldsymbol{v}_{\mathbf{2}}{ }^{\prime}=\mathbf{0}$. Since the dot product is $\boldsymbol{0}$, the vectors are perpendicular; i.e., the angle between the vectors is 90 degrees. (Pool players know this empirically!)

Elastic Collisions in the Center of Mass frame

An elastic collision in the center of mass frame is particularly simple: First, the angle between the outgoing particles is 180 degrees; i.e., if the scattering angle is θ then the recoil angle is $\pi-\theta$. Second, the final speeds are equal to the initial speeds.
[[Proof: Because with these final velocities, the total momentum is zero and the total kinetic energy is constant; that's obvious from the diagram.]]

Energies and Scattering Angles (compare $L A B$ and $C M$)

Before coll.

$$
V_{L}=\frac{m_{1}}{m_{1}+m_{2}} v_{1 L}
$$

$$
V_{K}=\frac{m_{2}}{m_{1}+m_{2}} v_{I L}
$$

After coll.

$$
\vec{v}_{1 L}^{\prime}=\vec{V}_{L}+\vec{v}_{l c}^{\prime}
$$

$$
=V_{L} \hat{\imath}+v_{l c}^{\prime}\left(\hat{\imath} \cos \theta_{c}+\hat{\jmath} m i \theta_{c}\right)
$$

where $v_{1 c}^{\prime}=v_{1 c}=\frac{m_{2}}{m_{1}+m_{2}} v_{l c}$

- $\tan \theta_{L}=\frac{\left(v_{1 L}^{\prime}\right)_{y}}{\left(v_{i L}^{\prime}\right)_{x}}=\frac{v_{1 c}^{\prime} \sin \theta_{c}}{V_{L}+v_{i c}^{\prime} \cos \theta_{c}}$

$$
\tan \theta_{L}=\frac{\sin \theta_{c}}{\cos \theta_{c}+\left(m_{1} / m_{2}\right)}
$$

- $K_{I L}=\frac{1}{2} m_{1} v_{I L}^{2}=\frac{m_{1}}{2}\left(\frac{m_{1}+m_{2}}{m_{2}} v_{1 C}\right)^{2}$

$$
K_{1 L}=\left(\frac{m_{1}+m_{2}}{m_{2}}\right)^{2} K_{1 c}
$$

The suffering cross section

$$
\frac{d \sigma}{d \Omega}=\frac{1}{I} \frac{d N}{d \Omega}
$$

Calulater the cross section wi the center of man frame \longrightarrow

Solid Angle
 the equivalent 1-body problem

$b=$ inset
Classical nucchamis is deterministic $\Rightarrow \theta_{c}(b)$.

$$
\left(\frac{d \sigma}{d \Omega^{\prime}}\right)_{C M}=\frac{b}{\sin \theta_{c}}\left|\frac{d b}{d \theta_{c}}\right|
$$

Prof: $2 \pi b \delta b I=d N=I\left(\frac{d \sigma}{d \Omega^{\prime}}\right) 2 \pi \sin \theta_{c} \delta \theta_{c}$

$$
\therefore\left(\frac{d \sigma}{d \Omega^{\prime}}\right)=\text { as claimed. }
$$

The cross section in the lab frame of reference is $\left(\frac{d \sigma}{d \Omega}\right)_{\text {lat }}=\left(\frac{d \sigma}{d \Omega}\right)_{c M} \frac{\sin \theta_{c}}{\sin \theta_{L}} \frac{d \theta_{c}}{d \theta_{L}} \quad$ up $\quad \theta_{c} \rightarrow Q$

> Dynamics for a System of Particles 3d - Transfer of Momentum or Mass

Review
 (1) Dynamics of a single particle
 $m \frac{d \vec{v}}{d t}=\vec{F} \quad$ and $\quad \frac{d \vec{x}}{d t}=\vec{v}$
 Or, we can write
 Mass does not change for a single particle.
 $$
\begin{aligned} & \frac{\mathrm{d} \overrightarrow{\mathrm{p}}}{\mathrm{dt}}=\overrightarrow{\mathrm{F}} \quad \text { and } \quad \frac{\mathrm{d} \overrightarrow{\mathrm{x}}}{\mathrm{dt}}=\overrightarrow{\mathrm{v}} \\ & (\overrightarrow{\mathrm{p}}=\mathrm{m} \overrightarrow{\mathrm{v}}) \end{aligned}
$$

(2) Dynamics of an extended object

Imagine the object subdivided into many small parts.

$$
\begin{aligned}
& \vec{P}=\vec{P}_{1}+\vec{P}_{2}+\vec{P}_{3}+\cdots+\vec{P}_{N} \\
& \frac{d \vec{P}}{d t}=\sum_{i=1}^{N}\left(\vec{F}_{i}^{\text {ext }}+\vec{F}_{2}^{\text {int }}\right) \\
& \frac{d \vec{P}}{d t}=\vec{F} \\
& \text { Also, } \vec{P}=M \vec{V} \quad \text { so } \quad \frac{d \vec{X}}{d t}=\frac{\vec{P}}{M}
\end{aligned}
$$

The center of mass motion is just like a particle!

Dynamics of many particles

(3) Dynamics of many particles

Unlike a solid object, where strong internal forces hold the structure constant, a system may have internal motions.
Example: Collisions
Still, the center of mass of the system moves as a particle

$$
\frac{\mathrm{d} \overrightarrow{\mathrm{P}}}{\mathrm{dt}}=\overrightarrow{\mathrm{F}} \quad \text { and } \quad \frac{\mathrm{d} \vec{X}}{\mathrm{dt}}=\frac{\overrightarrow{\mathrm{P}}}{\mathrm{M}}
$$

($P=$ total momentum; $F=$ sum of external forces, $M=$ total mass, $X=$ center of mass position)

Example. The bola (a gaucho's hunting weapon)

The center of mass moves as a single particle projectile

i.e., $\mathrm{d}^{2} \mathbf{X} / \mathrm{dt}^{2}=\mathbf{g}$.

Transfer of Momentum or Mass

Next we'll consider systems where momentum or mass is transferred from one part of the system to another.
 This is another aspect of the dynamics of a system of particles.
 Example: Rockets

Example. Loading coal into a train

 car.

F = the external force on the car.
There are also internal forces when the coal lands in the car. Assume that the coal stops when it lands in the car (does not bounce around like a rubber ball). The dynamics is like inelastic collisions, occurring continuously in time.
Transfer of mass - to the car
Transfer of momentum - to the coal

Loading coal into a train car

First Case. $\mathrm{F}=0$ and $\mathrm{v}(0)=\mathrm{v}_{0}$. Determine $\mathrm{v}(\mathrm{t})$.
The dynamical system consists of the train car $\left\{\mathbf{M}_{\text {car }}\right\}$ plus the coal $\left\{\mathbf{M}_{\text {coal }}(\mathrm{t})\right\}$.

$$
P=M_{\text {car }} v+M_{\text {coal }} v
$$

Assume $M_{\text {coal }}=\mu t$ where $\mu=\frac{d M_{c}}{d t} ;$ ie., constant rate

$$
\begin{aligned}
\frac{d P}{d t} & =\left(M_{c a r}+M_{c o d}\right) \frac{d v}{d t}+\frac{d M_{c a l}}{d t} v \\
& =\left(M_{c}+\mu t\right) \frac{d v}{d t}+\mu v \\
\frac{d P}{d t} & =F=0 \\
& \frac{d v}{d t}=\frac{-\mu v}{M_{c}+\mu t}
\end{aligned}
$$

Solution.

Velocity

$$
\frac{d v}{v}=\frac{-\mu d t}{N_{c}+\mu t}
$$

$$
\ln v-\ln v_{0}=-\ln \left(\mu_{c}+\mu t\right)+\ln \left(\mu_{c}\right)
$$

$$
v=\frac{\mu_{c} v_{0}}{\mu_{c}+\mu t}
$$

Distance

$$
D=\int_{0}^{t} v d t=\frac{M_{c} v_{0}}{\mu} \ln \frac{M_{c}+\mu t}{M_{e}}
$$

Acceleration

$$
a=\frac{d v}{d t}=\frac{-\mu v_{0} M_{c}}{\left(M_{c}+\mu t\right)^{2}}
$$

Loading coal into a train car

Second Case. $F=F_{0}$ (a constant external force) and $v(0)=v_{0}$. Determine $\mathrm{v}(\mathrm{t})$.
Equation of motion

$$
\begin{gathered}
\frac{d P}{d t}=\left(M_{c}+\mu t\right) \frac{d v}{d t}+\mu v \\
\frac{d P}{d t}=F_{0} \\
\left(M_{c}+\mu t\right) \frac{d v}{d t}=F_{0}-\mu v \\
\quad \frac{d v}{F_{0}-\mu v}=\frac{d t}{M_{c}+\mu t} \\
\begin{aligned}
\frac{1}{\mu}\left[\ln \left(F_{0}-\mu v_{0}\right)\right. & \left.-\ln \left(F_{0}-\mu v\right)\right] \\
& =\frac{1}{\mu}\left[\ln \left(M_{c}+\mu t\right)-\ln M_{c}\right]
\end{aligned}
\end{gathered}
$$

Solution.

$$
\begin{aligned}
& \frac{F_{0}-\mu v}{F_{0}-\mu v_{0}}=\frac{M_{c}}{M_{c}+\mu t} \\
& v=\frac{M_{c} v_{0}+F_{0} t}{M_{c}+\mu t}
\end{aligned}
$$

The force due to falling water

Solution.

Consider a small time interval dt.
Calculate the change of momentum of the water that hits the surface during that time.
mass: $d m=r A v_{0} d t$
velocity at the surface: $v_{S}=\sqrt{v_{0}^{2}+2 g h}$
change of momentum $d P=d m v_{s}$ (approx.)
normal force: $N=d P / d t=r A v_{0} v_{s}$
Numerical Example.
$d=2.54 \mathrm{~cm}, v_{0}=30.48 \mathrm{~cm} / \mathrm{s}, h=30.48 \mathrm{~cm}$
$A=5.07 \times 10^{-4} \mathrm{~m}^{2} ; v_{S}=2.46 \mathrm{~m} / \mathrm{s} ;$
($r=1000 \mathrm{~kg} / \mathrm{m}^{3}$)
$N=0.380$ newton ($=$ force on the surface due to momentum transfer)

The Falling Chain	
Calculate the force on the surface.	Solution. Treat the chain as a continuum. Free fall: $\mathrm{v}=\mathrm{gt}$ and $\mathrm{x}=1 / 2 \mathrm{gt} \mathrm{t}^{2}$ $P(t)=\rho_{\text {len }}(L-x) v \leqslant$ where $\rho_{\text {len }}=M / L$ $\mathrm{dP} / \mathrm{dt}=\mathrm{F}_{\text {ext }}=\mathrm{Mg}-\mathrm{N}$ I'll leave the rest of the calculation as an exercise. Answer: When the top of the chain hits the table, i.e., for $\mathrm{x}=\mathrm{L}$, the force on the surface is $\mathrm{F}_{\text {suff }}=-\mathrm{N}=3 \mathrm{Mg} .$

Combustion releases chemical energy, which is converted into kinetic energy of the exhaust gases. Total momentum ...

$$
\begin{aligned}
& P=P_{\text {rocket }}+P_{\text {exhaust }} \\
& \frac{d P}{d t}=F_{e x t e r n a l}
\end{aligned}
$$

These are the principles of dynamics for a system of particles (rocket \& gas).
Two parameters of the exhaust gas
$\mu=$ mass rate (kg/s)
$u=$ relative speed $(\mathrm{m} / \mathrm{s})$

Dynamics for a System of Particles
3-5: Rockets

Example 1: An isolated rocket with constant μ and u (in free space).

$$
\begin{array}{ll}
F_{e x t e r n a l}=0 & \begin{array}{l}
\text { isolated } \\
\text { rocket }
\end{array} \\
\frac{d P}{d t}=0 &
\end{array}
$$

For a short time interval δt, calculate סP

$$
\delta \mathbf{P}=\mathbf{P}(t+\delta t)-\mathbf{P}(t)
$$

Let $m(t)=$ mass of the rocket (and enclosed fuel) at time t; let $v(t)=$ the velocity of the rocket at time t. Then

$$
P(t)=m(t) v(t) \begin{aligned}
& \text { the rocket } \\
& \text { at timet }
\end{aligned}
$$

$$
\begin{aligned}
& P(t)=m(t) v(t) \text { rocket and enclosed gas at } t \\
& P(t+\delta t)=m(t+\delta t) v(t+\delta t)+(v-u) \mu \delta t
\end{aligned}
$$

$$
\begin{aligned}
\delta P= & m(t+\delta t) v(t+\delta t)+(v-u) \mu \delta t \\
& -m(t) v(t) \\
\delta P= & (m-\mu \delta t)(v+\delta v)+(v-u) \mu \delta t \\
& -m v
\end{aligned}
$$

$$
\delta P=m \delta v-\mu u \delta t+O(\delta t)^{2}
$$

Important: We can neglect that in the limit $\delta \mathrm{t} \rightarrow 0$.

$$
\frac{d P}{d t}=0 \Rightarrow m \frac{d v}{d t}-\mu n=0
$$

Also,

$$
m(t)=m_{0}-\mu t
$$

So the equation of motion is

$$
\left(m_{0}-\mu t\right) \stackrel{d v}{d t}=\mu u
$$

Separation of variables

$$
\begin{aligned}
& d v=\frac{\mu u}{m_{0}-\mu t} d t \\
& \int_{v_{0}}^{v} d v=\int_{0}^{t} \frac{\mu u}{m_{0}-\mu t} d t \\
& v-v_{0}\left.=\mu u\left(\frac{-1}{\mu}\right) \ln \left(m_{0}-\mu t\right)\right]_{0}^{t} \\
&=u\left\{-\ln \left(m_{0}-\mu t\right)+\ln m_{0}\right\} \\
&=u \ln \frac{m_{0}}{m_{0}-\mu t} \\
& v(t)=v_{0}+u \ln \frac{m_{0}}{m_{0}-\mu t}
\end{aligned}
$$

Rocket in Free Space

Equation of motion:

$$
\left(m_{0}-\mu t\right) \frac{d v}{d \ddot{t}}=\mu u
$$

Solution:

$$
v=v_{0}+u \ln \frac{m_{0}}{m_{0}-\mu t}
$$

masses	
m_{R}	Empty Rocket
m_{F}	Initial Fuel
m_{0}	$m_{R}+m_{F}$
m	$m_{0}-\mu t$

Exercise. Show, for any time dependence of the mass rate $\mu(t)$, but still assuming that u is constant (independent of time),

$$
v(t)=v_{0}+u \ln \frac{m_{0}}{m(t)}
$$

Rocket at the surface of the Earth

Example 2: A rocket with constant μ and u, at the surface of the Earth.

$$
\begin{aligned}
& F_{e x t e r n a l}=-m g \\
& \frac{d P}{d t}=-m g
\end{aligned}
$$

For a short time interval δt, calculate δP

$$
\delta P=P(t+\delta t)-P(t)
$$

Same as before,

$$
\frac{d P}{d t}=m \frac{d v}{d t}-\mu u
$$

Equation of motion:

$$
m \frac{d v}{d t}=\mu n-m g
$$

Separation of variables:

$$
\begin{aligned}
& d v=\left\{\frac{\mu u}{m_{0}-\mu t}-g\right\} d t \\
& v-v_{0}=\int_{0}^{t}\left\{\frac{\mu u}{m_{0}-\mu t}-g\right\} d t \\
& =-g t+u \ln \frac{m_{0}}{m_{0}-\mu t}
\end{aligned}
$$

Exause Verify that the initial ditferatial equation is satisfel.

Solution:

$$
v=v_{0}-g t+u \ln \frac{m_{0}}{m_{0}-\mu t}
$$

Rocket at the surface of the Earth

Solution:

$$
v=v_{0}-g t+n \ln \frac{m_{0}}{-\ldots-\mu t}
$$

Parameters: $\mathrm{v}_{0}=100 \mathrm{~m} / \mathrm{s}$

Exercise:

What is the condition for take-off: i.e., upward acceleration $(a>0)$ at $t=O$?

Answer:

$$
\begin{aligned}
& a=d v / d t=-g+u \mu /\left(m_{O}-\mu t\right) \\
& a(O)>O \text { requires } \mu u>m_{O} g
\end{aligned}
$$

In words, the thrust must be > the weight.

Exercise:

What is the height at burnout?

$$
\begin{aligned}
& \text { Answer: } \\
& H_{b}=\int_{0}^{t_{b}} v(t) d t=\int_{0}^{m_{F} / \mu}\left(-g t+u \ln \frac{m_{0}}{m_{0}-\mu t}\right) d t
\end{aligned}
$$

(l'll leave the calculation as an exercise.)
Note: H_{b} is not the maximum height. The rocket is still moving upward at burnout. It reaches the maximum height when $v=0$.

