

The momentum is, by definition, $\mathbf{p} = \mathbf{m} \mathbf{v}$.

The x component is constant,

 $p_x = m v_0 \cos \theta$;

the y component decreases at the rate – mg,

 $p_v = m v_0 \sin \theta - m g t$.

The momentum vector is

 $p(t) = p_{0x} i + (p_{0y} - mgt) j;$ (1)

it is consistent with Newton's second law,

 $d\mathbf{p} / dt = -mg\mathbf{j}$ (the *weight*) (2)

All this is a familiar example of single-particle dynamics.

Each pebble will probably move independently. (Two pebbles could hit each other as they move, but that would be unlikely; we'll ignore that possibility.) Then we can write the momentum of the i-th pebble as

 $p_i(t) = p_{0ix} i + (p_{0iy} - m_i g t) j$,

consistent with Newton's second law,

 $d\mathbf{p}_i / dt = -m_i g \mathbf{j}$ (the weight of pebble #i)

We know the complete dynamics of the system because the motions of the pebbles are independent The **total momentum** is defined by

$$\mathbf{P}(t) = \sum_{i=1}^{N} \mathbf{p}_{i}(t) ;$$

by the complete dynamics,

$$\mathbf{P}(t) = \mathbf{P}_{0x} \, \mathbf{i} + (\mathbf{P}_{0y} - \mathbf{Mg}) \mathbf{j} \tag{3}$$

where P_0 is the initial momentum and M is the total mass, $M = \Sigma m_i$. Compare equations (3) and (1). You should see that the *total momentum* of the N pebbles is mathematically the same as if there were only one large pebble with mass M.

The <u>center of mass</u> is the "average position of the system of particles, weighted by their masses." That is, N

$$\mathbf{X}(t) = \frac{\sum_{i=1}^{N} m_i \mathbf{x}_i(t)}{\sum_{i=1}^{N} m_i}$$

or,
$$\mathbf{X}(t) = \frac{1}{M} \left[m_1 \mathbf{x}_1 + m_2 \mathbf{x}_2 + m_3 \mathbf{x}_3 + \cdots + m_N \mathbf{x}_N \right]$$

An important theorem relates the total momentum and center of mass:

$$\mathbf{P} = \mathbf{M} \mathbf{V}$$
 where $\mathbf{V} = \frac{\mathbf{dX}}{\mathbf{dt}}$ (4)

Here's the proof ...
The center
$$g$$
 man position is
 $\vec{X} = \frac{1}{M} \{ m_1 \vec{x}_1 + m_2 \vec{x}_2 + m_3 \vec{x}_3 + ... + m_N \vec{x}_N \}$
The center g man velocits is
 $\vec{V} = \frac{d\vec{X}}{dx} = \frac{1}{M} \{ m_1 \frac{d\vec{x}}{4t} + w_2 \frac{d\vec{x}}{4t} + ... + m_N \frac{d\vec{x}}{4t} \}$
 $= \frac{1}{M} \{ \vec{p}_1 + \vec{p}_2 + \vec{E} + ... + \vec{p}_N \}$
 $= \frac{1}{M} \vec{P}$ (total morentum),
Thus
 $\vec{P} = M \vec{V}$ ulue $\vec{V} = \frac{d\vec{X}}{dt}$
Q.E.D.
Lecture 3a 4

are tied together by strings. Suppose that some pebbles are connected by springs, initially stretched or compressed. You are not now tossing a set of N independent particles, but a *big blob* of pebbles that are exerting forces on each other.

But we can determine the total momentum **P(t)** and the center of mass trajectory **X(t)**. The remarkable result is that the total momentum and the center of mass trajectory are exactly the same as if the pebbles were not exerting forces on each other:

$$\mathbf{P}(t) = P_{0x}\hat{\mathbf{i}} + (P_{0y} - Mgt)\hat{\mathbf{j}}$$
(5)
$$\frac{d\mathbf{X}}{dt} = \frac{\mathbf{P}(t)}{M}$$
(6)

Note that equations (5) and (6) (for strongly interacting particles) are the same as equations (3) and (4) (for non-interacting particles). Why are the total momentum and center of mass independent of the internal forces in the system of particles?

Proof of equation (5)

Total normentrum P = Z Fi Consider the derivative, $\frac{d\hat{P}}{dt} = \sum_{i=1}^{N} \frac{d\tilde{P}_{i}}{dt} = \sum_{i=1}^{N} \vec{F}_{2}$. Newton's Second law • $\vec{F}_{i} = \vec{F}_{i} + \sum_{j=1}^{N} \vec{F}_{ij}$ War Fiert = - mig J and \overline{f}_{ij} = the force on man i due to the interaction of masses i and j $S_{2} \sum_{i=1}^{N} \overline{F}_{i} = \sum_{i=1}^{N} \overline{F}_{i} + \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{f}_{j}$ = 0 by Newton's tained law = - Mgĵ (M= total mass) That's the crucial Resalt : Pct) = Pox 2 + (Poy - Mgt) j Q.E.D. Lecture 3a

6

Proof of equation (6)

These examples — the non-interacting pebbles and the blob of strongly interacting pebbles — illustrate something important about the dynamics of a system of particles. Questions about the **total momentum** and **center of mass** may have simple answers, independent of complicated internal dynamics.

Classical Dynamics for a System of Particles (Chapter 9) <u>The two-body problem</u>

Here's an interesting fact ---

The dynamics of an isolated system of two particles is equivalent to the dynamics of a single particle.

So we can always solve the 2-body problem — it reduces to a 1-body problem.

The equations of motion are

$$m_1 \frac{dv_1}{dt} = \vec{F_1}$$
 $\vec{F_1} = \vec{F_1}^{ext} + \vec{f}$
 $m_2 \frac{dv_2}{dt} = \vec{F_2}$ $\vec{F_2} = \vec{F_2}^{ext} - \vec{f}$
For an isolated system, the external forces
would be 0,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 $vould = 0$,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 $vould = 0$,
 $\vec{F_1}^{ext} = 0$ and $\vec{F_2}^{ext} = 0$. (isolated
 $vould = 0$,
 v

Masses m_1 and m_2 have position vectors \mathbf{x}_1 and \mathbf{x}_2 , respectively. The center of mass position is \mathbf{X} ; the relative vector is \mathbf{r} .

Separation of CM motion and relative motion

$$M_1 \frac{dv_i}{dt} = \hat{f}$$
 where $\vec{v}_1 = \frac{d\vec{x}_i}{dt}$ (1)
 $M_2 \frac{d\vec{v}_2}{dt} = -\hat{f}$ where $\vec{v}_2 = \frac{d\vec{x}_i}{dt}$ (2)
We'll now separate the center g mans (CM)
hofim and relative motion.

Masses m_1 and m_2 have position vectors x_1 and x_2 , respectively. The center of mass position is X; the relative vector is \mathbf{r} .

The center of man and relative vectors
one defined in the FIGURE; that is,
$$\overline{X} = \frac{m_1 \overline{x}_1 + m_2 \overline{x}_2}{m_1 + m_2}$$
(3)

$$\vec{r} = \vec{x}_1 - \vec{x}_2 \qquad (4)$$

Or, we may express the particle position rectros
in terms of
$$\vec{X}$$
 and \vec{r}
 $\vec{X}_1 = \vec{X} + \frac{m_2}{M}\vec{r}$ (5)
 $\vec{X}_2 = \vec{X} - \frac{m_1}{M}\vec{r}$ (6)

Please verify that equations (3) and (4) follow from equations (5) and (6).Lecture 3a3

Motion of the center of man point

$$M\vec{R} = m_1 \vec{x}_1 + m_2 \vec{x}_2$$

$$M\vec{V} = m_1 \vec{v}_1 + m_2 \vec{v}_2 = \vec{p}_1 + \vec{p}_2 = \vec{p}$$

$$(\vec{V} = \frac{d\vec{r}}{dt}, etc)$$
Theorem The total momentum is constant,
because of Newton's thurd low:

$$Prof \quad \vec{P} = \vec{p}_1 + \vec{p}_2$$

$$\frac{d\vec{P}}{dt} = \frac{d\vec{p}_1}{dt} + \frac{d\vec{p}_2}{dt} = \vec{f} - \vec{f} = 0.$$

$$\vec{P} \text{ is constant}, \qquad \text{OFF}$$
Theorem The center of man point
moves with constant velocity.

$$Prof \quad \vec{P} = M\vec{V} \quad \text{when } M = m_1 + m_2.$$

$$\vec{P} \text{ is curstant}, \quad \text{so } \vec{V} \text{ is curstant}, \qquad \text{OFF}$$

So the motion of the center of mass is <u>constant</u> <u>velocity</u>: X(t) = V t and V = P/M.

RELATIVE VECTOR $\vec{r} = \vec{x}_1 - \vec{x}_2$ The relative motion r Jomi Define $\vec{U} = \frac{dr}{dr}$ Thesens It dit = f where is it the reduced mass. $\vec{U} = \frac{d\vec{r}}{dt} = \frac{d\vec{x}_1}{dt} - \frac{d\vec{x}_2}{dt} = \vec{U}_1 - \vec{U}_2$ Prof $\frac{d\overline{v}}{dt} = \frac{d\overline{v}}{dt} - \frac{d\overline{v}}{dt} = \frac{\overline{f}}{f} - \frac{-\overline{f}}{f} = \frac{\overline{f}}{f}$ where $\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}$ or $\mu = \frac{m_1 m_2}{m_1 + m_2}$ Reduction of the isolated 2-body problem to an equivalent I - body problem $\overline{x}_{1} = \overline{X} + \frac{m}{H} \overline{r}$ and $\overline{x}_{1} = \overline{X} - \frac{m}{H} \overline{r}$ Han X(+) = X + V t and Mar = f Solve $\mu \vec{r} = \vec{f}$; then $\vec{x}_1 \in \vec{x}_2$ are known. Lecture 3a

The lecture will continue with 2 examples. Example 1 Diatomic Oscillator mi m2 k 11 00000 2 Example 2 Binary Star System

m.

m,

Example : Binney Star System with Circular Orbits
Use the frame of reference when
the CH point is at rest at 10.0).

$$\vec{r}_1 = \vec{I} + \frac{m_2}{m}\vec{r} = -\frac{m_1}{m}\vec{r}$$

 $\vec{r}_2 = \vec{X} - \frac{m_1}{m}\vec{r} = -\frac{m_1}{m}\vec{r}$
The stars revolve around the center of mass bookt
on arcalar whits with redic: $R_1 = \frac{m_2}{M} + \cosh R_2 = \frac{m_1}{M}r$;
and r is the distance belower the Shores, $= R_1 + R_2$.
The equivalent 1-body problem
 $\mu \vec{r} = \vec{S} \implies \mu \vec{r} = -\frac{Gtm_1m_2}{r^2} \hat{r}$
The imaginary particle (A) undargoes uniform circular
 $m_1 \vec{r}^2 = \frac{G(m_1 + m_2)}{r^2}$ and $T = \frac{2\pi r}{r} = \sqrt{\frac{4\pi^2 r^3}{G(m_1 + m_2)}}$

Dynamics - Systems of Particles 3c - Collisions

In everyday life, we normally think of a collision as an event in which two objects hit each other. In physics the word is used in a more general way. A collision is an event in which:
Two objects move together, experience equal but opposite forces, and accelerate in response to those forces.
When the two objects are far apart, they move freely, i.e., with constant velocity.

✓ <u>Total momentum</u> is conserved. You should be able to prove that ... $m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'$, because of Newton's third law. ✓ The <u>center of mass point</u> moves with constant velocity, V = P/M = constant; again, you should be able to prove that V = P/M.

The LAB frame and the CENTER of MASS frame

 $v' = \frac{m_1 v_1}{m_1 + m_2}$ ΔK $-m_{2}$ Exercise: Show that the change of $K_{\rm in}$ $m_1 + m_2$ 3 kinetic energy is ...

Totally Elastic Collisions

A <u>totally elastic collision</u> is a collision in which the total kinetic energy is conserved.

□ Total momentum is conserved.

□ Total kinetic energy is conserved.

Example. A totally elastic collision in two dimensions (lab frame)

Conservation laws: $P_x = m_1 v_1 = m_1 v_1' \cos \theta_1 + m_2 v_2' \cos \theta_2$ $P_y = 0 = m_1 v_1' \sin \theta_1 - m_2 v_2' \sin \theta_2$ $K = \frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_1 v_1^{*2} + \frac{1}{2} m_2 v_2^{*2}$ E.g., given v₁ and θ_1 ... calculate v₁', v₂', and θ_2 .

Example: Suppose $m_1 = m_2$ in a totally elastic collision. Show that the angle between the final velocities is 90 degrees.

Solution: The masses are equal so the conservation of momentum is ... $v_1 = v_1' + v_2'$.

Thus,
$$v_1^2 = v_1'^2 + v_2'^2 + 2 v_1' + v_2'$$

But conservation of kinetic energy implies $v_1^2 = v_1^{2} + v_2^{2}$.

Thus, $v_1' \cdot v_2' = 0$. Since *the dot product is 0*, the vectors are perpendicular; i.e., the angle between the vectors is 90 degrees. (*Pool players know this empirically*!)

Elastic Collisions in the Center of Mass frame

An elastic collision in the center of mass frame is particularly simple: **First,** the angle between the outgoing particles is 180 degrees; i.e., if the scattering angle is θ then the recoil angle is $\pi - \theta$. Second, the final speeds are equal to the initial speeds.

[[Proof: Because with these final velocities, the total momentum is zero and the total kinetic energy is constant; that's obvious from the diagram.]]

Energies and Scattering Angles (Compare LAB and CM) After coll. Before Coll. $\begin{array}{c} y\uparrow \quad \overrightarrow{J_{1L}} \\ \overbrace{J_{0L}} \\ \overbrace{J_{0c}} \\ \hline{V_{1}} \\ \end{array} \xrightarrow{J_{0c}} \xrightarrow{} x$ $\xrightarrow{\overrightarrow{v_{IL}}} \xrightarrow{\overrightarrow{v_{IL}}} \xrightarrow{\overrightarrow{v_{Ic}}}$ $V_{1C} = \frac{m_2}{m_1 t_{m_2}} V_{1L}$ = 1/2 + vic (î us 0 + j mi 0 c) where $\mathcal{V}_{1c}' = \mathcal{V}_{1c} = \frac{m_2}{m_1 tm_2} \mathcal{V}_{1L}$ • tun $\Theta_L = \frac{(\upsilon_1 L)_{\gamma}}{(\upsilon_1 L)_{\chi}} = \frac{\upsilon_1 c \min \Theta_C}{V_1 + \upsilon_1 c \log \Theta_C}$ $\tan \theta_L = \frac{\sin \theta_c}{\cos \theta_c + (m_1/m_2)}$ • $K_{1L} = \frac{1}{2} m_1 U_{1L}^2 = \frac{M_1}{2} \left(\frac{M_1 + M_2}{M_2} U_{1c} \right)^2$ $K_{1L} = \left(\frac{m_1 + m_2}{m_2}\right)^2 K_{1C}$

The scuttering cross section detectors D-- JOLAB - dR = 215 sin 0 d0 beam target $\frac{d\sigma}{d\Omega} = \frac{1}{T} \frac{dN}{d\Omega}$ Solid Angle dA Calculate the cross section in the Center of man frame -> $dSR = \frac{dA}{r^2}$ the equivalent 1-body problem) O = scafering angle 5M b = in pact Narametr classical muchanis is de torministic → *θ*_c (6). $\left(\frac{d\sigma}{d\Omega'}\right)_{CM} = \frac{b}{\Delta in \theta_c} \left| \frac{db}{d\theta_c} \right|$ Proof: 21 b db I = dN = I $\left(\frac{d\sigma}{d\Omega}\right)$ 21 sin $\theta_c \delta \theta_c$ $\frac{d\sigma}{d\rho} = as$ claimed. The cross section in the lab frame of reference $i\hat{a} \left(\frac{d\sigma}{d\Omega}\right)_{lab} = \left(\frac{d\sigma}{d\Omega}\right)_{CM} \frac{s_{ini}\partial_{c}}{m_{i}\partial_{i}} \frac{d\partial_{c}}{d\Omega} \quad \psi \quad \Theta_{c} \rightarrow \Theta_{c}$

Dynamics for a System of Particles 3d – Transfer of Momentum or Mass

Lecture 3-4

Dynamics of many particles

(3) <u>Dynamics of many particles</u> Unlike a solid object, where strong internal forces hold the structure constant, a system may have <u>internal motions</u>. <u>Example: Collisions</u>

Still, the center of mass of the system moves as a particle

$$\frac{d\vec{P}}{dt} = \vec{F}$$
 and $\frac{d\vec{X}}{dt} = \frac{\vec{P}}{M}$

(P = total momentum; F = sum of external forces, M = total mass, X = center of mass position)

Transfer of Momentum or Mass

Next we'll consider systems where momentum or mass is transferred from one part of the system to another. <u>This is another aspect of the</u> dynamics of a system of particles. Example: Rockets

F = the external force on the car.

There are also *internal* forces when the coal lands in the car. Assume that the coal stops when it lands in the car (does not bounce around like a rubber ball). The dynamics is like *inelastic collisions*, occurring continuously in time.

Transfer of mass – to the car

Transfer of momentum – to the coal

 $\frac{dP}{dL} = F = 0$

 $\frac{dv}{dt} = \frac{-\mu v}{M_{c} + \mu t}$

Solution.

Velocity

Lecture 3-4

The force due to falling water

Example. Water flows in the hose at velocity v_0 . The diameter of the hose is d. Calculate the force on the surface.

Solution.

Consider a small time interval dt. Calculate the change of momentum of the water that hits the surface during that time. mass: $dm = r A v_0 dt$ velocity at the surface: $v_s = \sqrt{v_0^2 + 2gh}$ change of momentum $dP = dm v_s$ (approx.) normal force: $N = dP / dt = r A v_0 v_s$ Numerical Example. $d = 2.54 \text{ cm}, v_0 = 30.48 \text{ cm/s}, h = 30.48 \text{ cm}$ $A = 5.07 \times 10^{-4} m^2$; $v_s = 2.46 m/s$; $(r = 1000 \ kg/m^3)$ N = 0.380 newton (= force on the surface due to momentum transfer)

The Falling Chain

Solution. Treat the chain as a continuum. Free fall: v = g t and $x = \frac{1}{2} g t^2$ $P(t) = \rho_{len} (L - x) v$ where $\rho_{len} = M/L$ $dP / dt = F_{ext} = Mg - N$ approx.; assuming the links don't bounce I'll leave the rest of the calculation as an exercise. Answer: When the top of the chain bits the

Answer: When the top of the chain hits the table, i.e., for x = L, the force on the surface is

$$F_{surf} = -N = 3 Mg.$$

Dynamics for a System of Particles 3-5: **Rockets**

Combustion releases chemical energy, which is converted into kinetic energy of the exhaust gases. Total momentum ...

$$P = P_{\text{rocket}} + P_{\text{exhaust}}$$
$$\frac{dP}{dt} = F_{\text{external}}$$

These are the principles of dynamics for a system of particles (rocket & gas). Two parameters of the exhaust gas

 μ = mass rate (kg/s) u = relative speed (m/s)

Example 1: An isolated rocket with constant μ and u (in free space).

$$F_{external} = 0$$
 isolated
rocket
$$\frac{dP}{dt} = 0$$

For a short time interval $\delta \textbf{t},$ calculate $\delta \textbf{P}$

 $\delta P = P(t+\delta t) - P(t)$

Let m(t) = mass of the rocket (andenclosed fuel) at time t; let <math>v(t) = thevelocity of the rocket at time t. Then P(t) = m(t) v(t) the rocket at time t

Rocket in Free Space

Also,

 $m(t) = m_0 - \mu t$ So the equation of motion is

$$(m_o - \mu t) \frac{dv}{dt} = \mu u$$

Separation of variables

$$dv = \frac{\mu u}{m_0 - \mu t} dt$$

$$\int_{0}^{v} dv = \int_{0}^{t} \frac{\mu u}{m_0 - \mu t} dt$$

$$v_{-} v_{0} = \mu u (\frac{-1}{\mu}) ln (m_0 - \mu t) \int_{0}^{t}$$

$$= u \{ -ln (m_0 - \mu t) + ln m_0 \}$$

$$= u ln \frac{m_0}{m_0 - \mu t}$$

$$V(t) = v_0 + u ln \frac{m_0}{m_0 - \mu t}$$

Rocket in Free Space

Lecture

Rocket at the surface of the Earth

Example 2: A rocket with constant μ and u, at the surface of the Earth.

$$\frac{F_{external}}{dP} = -mg$$

For a short time interval $\delta \textbf{t},$ calculate $\delta \textbf{P}$

$$\delta P = P(t+\delta t) - P(t)$$

Same as before,

$$\frac{dP}{dt} = m \frac{dv}{dt} - \mu u$$

Equation of motion:

$$m\frac{dv}{dt} = \mu u - mg$$

Separation of variables:

$$dv = \left\{ \frac{uu}{m_0 - \mu t} - g \right\} dt$$

$$v - v_0 = \int_0^t \left\{ \frac{uu}{m_0 - \mu t} - g \right\} dt$$

$$= -gt + u \ln \frac{m_0}{m_0 - \mu t}$$
Examise Verify that the initial differential question is satisfiel.

Solution:

$$v = v_0 - g t + u \ln \frac{m_0}{m_0 - \mu t}$$

Rocket at the surface of the Earth

Solution:

$$\mathbf{v} = \mathbf{v}_o - \mathbf{g} \mathbf{t} + \mathbf{u} \ln \frac{\mathbf{m}_o}{\mathbf{m}_o - \mu \mathbf{t}}$$

Parameters: $v_0 = 100$ m/s m_R m_F t_{burnout} U 100 kg 900 kg 30s 1000 m/s

Exercise:

What is the condition for take-off; i.e., upward acceleration (a > 0) at t = 0?

Answer:

$$a = dv / dt = -g + u \mu / (m_o - \mu t)$$

a(O) > O requires $\mu u > m_0 g$

In words, the thrust must be > the weight.

Exercise:

What is the height at burnout?

Answer:

$$H_{b} = \int_{0}^{t_{b}} v(t) dt = \int_{0}^{m_{F}/\mu} (-gt + u \ln \frac{m_{0}}{m_{0} - \mu t}) dt$$

(I'll leave the calculation as an exercise.) Note: H_b is not the maximum height. The rocket is still moving upward at burnout. It reaches the maximum height when v = O.