Oscillations

4a. The Simple Harmonic Oscillator

In general, an oscillating system with sinusoidal time dependence is called a harmonic oscillator. Many physical systems have this time dependence: mechanical oscillators, elastic systems, AC electric circuits, sound vibrations, etc.

Spring Forces

Robert Hooke, a contemporary of Isaac Newton (*), found that spring forces can be described by some simple properties ...

- The spring has an equilibrium length.
- If stretched or compressed by a small displacement, x , a restoring force pulls or pushes the spring toward equilibrium length.
- Within the elastic limit, the force is linear in the displacement; $\mathrm{F}(\mathrm{x})=-\mathrm{kx}$.

F is the force exerted by the spring.
(*) Hooke and Newton were acquaintances but their relationship was not friendly.

Dynamics of a mass on a spring

The motion of the block is an example of singleparticle dynamics and one dimensional motion.

The equation of motion is $m \ddot{X}=F(x)=-k x$
Or, $\ddot{x}=-\omega^{2} x \quad$ where $\quad \omega=\sqrt{\frac{k}{m}}$

Example 1. General initial conditions.
Suppose we are given initial conditions,

$$
x(0)=x_{0} \quad \text { and } \quad v(0)=v_{0} .
$$

Example 2. Suppose the initial position is $x=$ 0 , and the amplitude of oscillator is R. Then what is $\mathrm{x}(\mathrm{t})$?

Example 3. The mass is 1 kg and Hooke's constant is $100 \mathrm{~N} / \mathrm{cm}$. What is the frequency of oscillation?

Example 4. Energy

Consider the general solution

$$
x(t)=A \cos \omega t+B \sin \omega t
$$

(A) Calculate the kinetic and potential energy.
(B) Calculate the time averages of K and U .
(C) Calculate E and verify that it is constant.
(D) Calculate the amplitude of oscillation.

$$
x(t)=A \cos \omega t+B \sin \omega t
$$

(A) Kinetic and Potential Ereizg are...

$$
\begin{aligned}
& K= \frac{1}{2} m \dot{x}^{2}=\frac{m}{2}(-\omega A \operatorname{mi\omega } \omega t+\omega B \cos \omega t)^{2} \\
&= \frac{1}{2} m \omega^{2}\left(A^{2} \sin ^{2} \omega t+B^{2} \cos ^{2} \omega t-2 A B \sin \omega t \cos \omega t\right) \\
& \begin{aligned}
= & \frac{1}{2} h x^{2}=\frac{k}{2}(A \cos \omega t+B \sin \omega t)^{2} \\
= & \frac{1}{2} m \omega^{2}\left(A^{2} \cos ^{2} \omega t+B^{2} \sin ^{2} \omega t+2 A B \sin \omega t \cos \omega t\right) \\
& \quad\left(n o t: k=m \omega^{2}\right)
\end{aligned}
\end{aligned}
$$

(B) Time averages of K and U are... $\overline{\left.\left\langle\sin ^{2} \omega t\right\rangle=\left\langle\omega^{2}\right\} t\right\rangle=\frac{1}{2}}$

$$
\begin{array}{ll}
\langle\mid\rangle=\frac{1}{2} m \omega^{2}\left(\frac{1}{2} A^{2}+\frac{1}{2} B^{2}\right) & \langle\sin \omega t \cos \omega t\rangle=0 \\
\langle U\rangle=\frac{1}{2} m \omega^{2}\left(\frac{1}{2} A^{2}+\frac{1}{2} B^{2}\right) &
\end{array}
$$

(C) The total energy 5 E $E=K+U$

$$
E=\frac{1}{2} m \omega^{2}\left(A^{2}+B^{2}\right)
$$

and note phat E is constant mistime.
(D) Let R denote the amplituch of oscillation. then the muss 6 at its maximum disforeneat, lie., $x=R$, the relents is 0 . So at $x=R$, the limnetic cosy is O and potential aral is $U=E$.
At maximum lisplareneat: $U=\frac{1}{2} k R^{2}=E$ $=\frac{1}{2} m \omega^{2}\left(A^{2}+B^{2}\right)$. [Rencofer: $k=m \omega^{2}$.] Toss

$$
R=\sqrt{A^{2}+B^{2}}
$$

Example: Sliding Friction
Now suppose the coefficient of (kinetic) friction for the block sliding on the surface is μ. Determine $x(t)$.

During this part of the motion,

$$
m \ddot{x}=-k x+\mu m g
$$

(The block is moving to the left so the fristonal force is toward the right, $+\mu \mathrm{mg}$.)

The negative amplitude, which occurs at $\omega \mathrm{t}=\pi$, is

$$
x_{1}=\frac{\mu m g}{k}-A=-x_{0}+\frac{2 \mu m g}{k}
$$

Thus the amplitude of oscillation decreases by $2 \mu \mathrm{mg} / \mathrm{k}$ for each half cycle.

The solution is
$X(t)=\frac{\mu m g}{k}+A \cos \omega t+B \sin \omega t$
where the initial conditions require

$$
A=\left(x_{0}-\frac{\mu m z}{k}\right) \text { and } B=0
$$

Epilogue (4a)

Epilog (4a) - Complex Exponential Functions

$$
\begin{equation*}
x=-\omega^{2} x \tag{1}
\end{equation*}
$$

The general solution of the harmonic oscillator equation (1) may be written in several ways. In the lecture I wrote

$$
\begin{equation*}
x(t)=A \cos \omega t+B \sin \omega t \tag{2}
\end{equation*}
$$

which has two parameters (A, B) which can be adjusted to match initial values or other information about the motion.

Another form of the general solution is

$$
\begin{equation*}
x(t)=C \cos (\omega t-\phi) \tag{3}
\end{equation*}
$$

which also has two adjustable parameters ($\mathrm{C}=$ amplitude and $\phi=$ phase shift).

To see that either (2) or (3) can be used as a general solution of (1), note that (3) could be written

$$
\begin{equation*}
x(t)=C \cos \phi \cos \omega t+C \sin \phi \sin \omega t \tag{4}
\end{equation*}
$$

which has the same form as (2), with

$$
\begin{equation*}
A=C \cos \phi \quad \text { and } \quad B=C \sin \phi . \tag{5}
\end{equation*}
$$

Sinusoidal Functions and Complex Exponentials

$$
\begin{equation*}
\ddot{x}=-\omega^{2} x \tag{1}
\end{equation*}
$$

We could also write a general solution of (1) as a linear combination of complex exponentials,

$$
\begin{equation*}
x(t)=\alpha e^{\omega \omega t}+\beta e^{-l \omega t} \tag{6}
\end{equation*}
$$

where α and β are complex numbers. [$1=\operatorname{sqrt}(-1)$]
(Recall Euler's equation.)
But x must be real. It's the displacement of the mass from equilibrium, which can't be a complex number. So why would we introduce complex numbers into the solution, if we know the solution must be real?

The reason for using complex exponentials (which is common in physics) is that calculations may be simpler with exponentials (even complex exponentials than with sines and cosines. So we write the solution using complex functions and parameters for intermediate calculations. But at the end of hth calculations, we must take the real part of the expressions to get the physical solutions. The trick is : take the real part at the end.

Euler's equation and related equations

$$
\begin{array}{lr}
e^{\mathrm{l} \theta}=\cos \theta+i \sin \theta & e^{-l \theta}=\cos \theta-i \sin \theta \\
\cos \theta=\frac{e^{\mathrm{l} \theta}+\mathrm{e}^{-\mathrm{l} \theta}}{2} & \sin \theta=\frac{\mathrm{e}^{\mathrm{l} \theta}-\mathrm{e}^{-\mathrm{l} \theta}}{2 l}
\end{array}
$$

Oscillations
4b - The Damped Oscillator

$$
m \frac{d v}{d t}=-k x-b v
$$

Restoring force; Hooke's law
Standardized from Resistance force; viscosity

$$
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0
$$

where $2 \beta=\frac{b}{m}$ and $\omega_{0}^{2}=\frac{k}{m}$

Special limiting cases
(1)

$$
\begin{aligned}
& k=0 \Rightarrow \frac{d v}{d t}=-2 \beta v \\
& v(t)=C e^{-2 \beta t} \quad \begin{array}{c}
\text { exponential } \\
\text { damping }
\end{array}
\end{aligned}
$$

(2) $b=0 \Rightarrow \ddot{x}=-\omega_{0}^{2} x$

$$
x(t)=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t
$$

simple harm manic motion

General Solution, using exponential functions

$$
\begin{gathered}
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0 . \\
\operatorname{Try} x(t)=c e^{r t} \quad(\text { Appendix } C) \\
c r^{2} e^{r t}+2 \beta C r e^{r t}+\omega_{0}^{2} C e^{r t}=0 \\
r^{2}+2 \beta r+\omega_{0}^{2}=0 \\
r=-\beta \pm \sqrt{\beta^{2}-\omega_{0}^{2}}
\end{gathered}
$$

- Case 2 : Critically daryad motion $\overline{\beta=\omega_{0}}$

If $\beta=\omega_{0}$ then $r_{1}=r_{2}=-\beta$.
We ary have ore sonutim, $e^{-\beta t}$; so we neel anothen solutin. Eserise: $t e^{-\beta t}$
Thus the geveral solution $)^{\circ}$

$$
x(t)=\left(c_{1}+c_{2} t\right) e^{-\beta t}
$$

Exumple

$$
x(t)=A(1+\beta t) e^{-\beta t}
$$

Summary

Results in terms of the original parameters

$$
\mathrm{m} \ddot{\mathrm{x}}=-\mathrm{kx}-\mathrm{b} \dot{\mathrm{x}} \quad\left\{\begin{array}{l}
2 \beta=\mathrm{b} / \mathrm{m} \\
\omega_{0}^{2}=\mathrm{k} / \mathrm{m}
\end{array}\right.
$$

Under damped osulllations

Consider $x(t)=A\left[\cos \omega, t+\frac{\beta}{\omega_{1}} \sin \omega, t\right] e^{-\beta t}$
for $\omega_{0}=1.0$ and $\beta=0.02$

Velocity Apter a bit of aldabra (ExERCISE) $\dot{x}(t)=-A \omega_{1}\left[1+\left(\frac{\beta}{\omega_{1}}\right)^{2}\right] e^{-\beta t} \sin \omega_{1} t$

Note that $\mathrm{v}=0$ at $\omega_{1} \mathrm{t}=\pi, 2 \pi, 3 \pi, 4 \pi, \ldots$
These are the maximum displacements from $\mathrm{x}=0$.
The maximum positive displacements occur at

$$
\omega_{1} t=0,2 \pi, 4 \pi, 6 \pi, \ldots
$$

i.e., $\omega_{1} \mathrm{t}_{\mathrm{n}}=2 \pi \mathrm{n}$ for $\mathrm{n}=0,1,2,3,4 \ldots$
$\mathrm{x}_{\text {max }, \mathrm{n}}=\mathrm{A} \exp \left(-\beta \mathrm{t}_{\mathrm{n}}\right)=\mathrm{A} \exp \left(-2 \pi \beta \mathrm{n} / \omega_{1}\right)$

Energy and the unlerdampal oscillator
The mechanical energy io $E=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} k x^{2}$.
If $b=0$ then E is constant.
If b is "small" then E decreases "slowly."

$$
\begin{aligned}
\frac{d E}{d t} & =m \dot{x} \ddot{x}+k x \dot{x} \\
& =(m \ddot{x}+k x) \dot{x}=-b \dot{x}^{2}
\end{aligned}
$$

$$
\begin{aligned}
x_{n} & =A e^{-\frac{2 \pi \beta x}{\omega_{1}}} \\
n & =1234 \ldots .
\end{aligned}
$$

Comments

- $Q=\frac{m w_{1}}{b}$ whore $w_{1}=\sqrt{\omega_{0}^{2}-\left(b /\left(m_{n}\right)^{2}\right.}$

$$
Q=\sqrt{\left(\frac{m w_{0}}{b}\right)^{2}-\frac{1}{4}}
$$

For weak dumpling, $Q \approx \frac{m \omega_{0}}{b}$ and $Q \gg 1$.

- $\frac{E_{n}}{E_{n+1}}=\frac{\varepsilon e^{-2 \pi n / Q}}{5_{0} e^{-2 \pi(n+1) / Q}}=e^{2 \pi / Q} \quad \begin{aligned} & \text { inderempert } \\ & \text { of } n \text { for }\end{aligned}$ linear damping.
Or, $\quad \alpha=\frac{2 \pi}{\ln \left(E_{n}\left(E_{n+1}\right)\right.}$
- $|\Delta E|_{n}=E_{n}-E_{n+1}=\operatorname{loss}^{\text {energy }} \boldsymbol{q}$ mechanical

$$
\frac{|\Delta E|_{n}}{E_{n}}=1-\frac{E_{n+1}}{E_{n}}=1-e^{-2 \pi / Q}
$$

Traction of every lost firm x to $x+1$.
For weak damping, $2 \pi / Q \ll 1$ so $\frac{|\Delta E|_{n}}{E_{n}} \approx \frac{2 \pi}{Q}$
(Small)

- "Quality factor": large Q means weak damping.

