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PHY451, Spring 2011 
 
Notes on Optical Pumping Procedure & Theory 
Procedure 

1. Turn on the electronics and wait for the cell to warm up: ~ ½ hour.  The oven should 
already be set to 50 °C—don’t change this setting.  You can leave the black cover off the 
apparatus.  Set the front panel settings to the values outlined in Section (g) on p. 5-3 of 
the manual.  Once the cell is warmed up, look for pinkish glow from the lamp and a 
signal from the detector.  Move the two lenses around to maximize the signal.  
Underneath the optical components is a cm scale that you should use to record the 
positions of these various optical components, since other students may change these 
settings for their experiment.  Then check that the Linear Polarizer and ¼-wave plate are 
properly aligned.  You can determine the degree of circular polarization of the light by 
placing a second linear polarizer in front the detector and rotating its axis of polarization.  
The detector signal should change minimally as you rotate the linear polarizer.  If you 
wish, you can use the procedure on p. 3-8 & 3-9 of the manual to maximize the circular 
polarization of the light.  Now remove second linear polarizer, put the black cover on and 
shut its door to put the apparatus in the dark.  Note what happens to the detector signal. 

2. Start with experiment 4B, p. 4-6.  You should do a careful job of canceling the vertical 
and horizontal magnetic fields, as evidenced by a narrow zero-field transition.  At this 
time, make sure that the main horizontal-field coil is not connected to its current source.  
For the vertical coil, the red banana plug should be plugged into the red receptacle on its 
current source in order to cancel out the vertical component of “earth’s field.”  For the 
horizontal-field sweep coil, you’ll have to figure this out for yourself.  Use the compass 
to determine the direction of the horizontal component of the earth’s field and then apply 
a current to the sweep coil of appropriate polarity so that the earth’s field is opposed.  
Next apply a current to the main horizontal-field coil and see what polarity is needed to 
produce a horizontal field in the same direction as that of the sweep coil—this will be 
useful later when you do the quadratic Zeeman Effect.  Now disconnect the main 
horizontal coil.  It is a good idea to use a portable DVM to measure the current through 
the sweep-field coil from the voltage across a 1-Ω resistor in series with this coil. 
Do a sweep of the horizontal field manually to observe the zero-field resonance.  Note 
that the signal is “negative”—being on resonance corresponds to minimum transmission 
of light to the detector.  You will need to adjust the vertical field to minimize the width of 
the resonance.  The best procedure is to (1) adjust the horizontal sweep field so the 
detector output is sitting halfway between its maximum and minimum values and then (2) 
adjust the vertical field until the output is a maximum.  Then repeat (1) & (2) until you 
cannot narrow the resonance any further.  Also use another DVM to measure the current 
through the vertical-field coil.  The final step is to repeat (1) but rock the S end of the 
apparatus E & W until you get a maximum signal.  Here you are aligning the apparatus 
along the direction of the horizontal magnetic field in the lab.  Once you have nulled out 
both components of the earth’s field, you should calculate the magnitude and direction of 
the earth’s field in the lab, using the approximate coil calibrations given in the table on p. 
3-14.  Do you get a reasonable result? 
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Using the DVM and sweeping manually, measure the-full-width-at-half-maximum of the 
zero-field transition in Gauss—it should be ~ a few mG.  Now you can repeat this sweep 
using the Labview program for automatic taking of the data, so you can generate a graph.   

3. Next you must carefully calibrate the sweep-field and main-field coils as outlined on p. 4-
8 to 4-11.  Set the RF amplifier gain on ×4 and the oscillator output to near 0 db.  For the 
lowest-frequency 10-kHz Zeeman resonance, you can use the Labview program to 
generate a graph like Figure 4B-2 on p. 4-7 for your notebook.  However, for generating 
the frequency vs sweep-field-current graph shown on p. 4-10, you should use the DVM to 
record the sweep-field current at each Zeeman resonance.  On p. 2-15 you are given the 
useful quantity: µo/h = 1.3996 MHz/Gauss.   
For the main-field calibration, you should use two DVMs: one for sweep-field coil and 
another for the main-field coil.  It is a good idea to adjust the sweep-field current so that 
its field and the horizontal component of the earth’s field cancel.  This way your 
calibration of the main coil is almost decoupled from your calibration of the sweep-field 
coil.  Of course, you will need to adjust the sweep-field current slightly away from this 
zero-total-field state to attain a Zeeman resonance for a given frequency, because the 
main-coil current knob is rather coarse.  You will need to make up a table like the one on 
p. 4-11.  Your plot of main-coil field vs. current should pass close to (0,0). 

4. For the quadratic Zeeman effect, keep the RF-amplifier gain on ×4 and vary the output of 
the oscillator.  To avoid detecting the double-photon resonances, keep oscillator output as 
small as possible, consistent with having reasonable signal.  Use the Labview program to 
record the single-photon resonances as a function of the sweep field, a plot that should 
like Fig. 4C-1 on p. 4-13.  You will need to use both DVMs for the calibration: either 
manually recording the sweep-field current at each resonance or interpolating off the 
graph you recorded with Labview.  Use the MathCad program to obtain the expected 
values of B at each resonance and carefully compare them with your data. 
To record qualitatively what happens when double-photon absorption occurs, sweep the 
field with higher oscillator output—like Fig. 4C-3 on p. 4-14. 

5. For the Transient Effects, there are all sorts interesting experiments to do using a digital 
oscilloscope—see 4D on p. 4-17.  
(1) After the RF modulation is turned on, the frequency of the transient oscillations 
(“Rabi oscillations”) should depend linearly on the amplitude of the RF magnetic field (∝ 
IRF, the amplitude of the RF current through the RF coil).  See if you can confirm this.  
Although you’ll probably be recording the oscillator output voltage in db, you can devise 
an experiment to determine IRF from the db outputs by looking at the discussion on p. 3-
19.  You can use the known geometry of this RF coil to calculate the field produced by a 
given current and compare this result with the actual RF field amplitude determined from 
the frequency of the Rabi oscillations.   
(2) You can determine how the recovery rate for reestablishing pumping (after the RF 
modulation is turn off) depends on the intensity of the light passing through the cell.  
Place an additional linear polarizer between the linear polarizer of the circular polarizer 
and the interference filter and rotate the axis of this new polarizer to vary the light 
intensity.  Also record the DC output signal of the light detector to see if detector signal 
obeys Malus’ Law.  The following theory section will give you a hint on how to analyze 
your recovery-rate results. 
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Theory of Optical Pumping 
 
1.  From your Quantum Mechanics course (or the Optical Pumping instruction manual), you 
know that the total angular momentum of an electron (J) obeys J = L + S, where L is orbital 
angular momentum vector and S  (± ½) is spin angular momentum vector.  Recall that the values 
of J range over: L + S, L + S –1, … |L - S|.  For the ground state of Rb (L=0), one has 
2SJ= (0 + ½) = ½ ; and for the first excited state, 2PJ=|1 - ½| = ½. 
 
2.  The precursor to Equation 2B-1 is: 
 H = AI⋅J - µJ⋅B - µI⋅B        (1) 
For the two Zeeman-Effect terms (electron and nucleus), the lowest energy is when moment µ is 
parallel to magnetic field B.  The term AI⋅J is the hyperfine coupling between the electron and 
its nucleus. 

Because the electron has a negative charge, its moment µJ is opposite to its total angular 
momentum vector J.  Thus µJ = - (|µJ|/|J|)J.   
Thus Eq. 2B-1 should read: 
  H = AI⋅J + (|µJ|/|J|)J⋅B – (|µI|/|I|)I⋅B      (2) 
where it is assumed for the nucleus that µI is parallel to I, which is the case for 87Rb and 85Rb. 

Next, Eq. 2B-5 should be corrected to read: W = + gJ⋅µ0⋅B⋅MJ, where µ0 is the Bohr magneton, 
MJ is the component of J along B and gJ = 2 for the ground state 2S1/2. 

Eq. 2B-7 should really read W = + gF⋅µ0⋅B⋅MF where MF is the component of angular momentum 
vector F along B.  Note that F is defined to be: F = J + I, and the values of F range over J + I, 
J+I – 1, … |J - I|.  For 87Rb, one has I = 3/2, giving F = J + I = 1/2 + 3/2 = 2 and  
F = |J - I| = |1/2 - 3/2| = 1 for both the 2S1/2 and 2P1/2 states.  For F = 2, one has  
MF = -2, -1, 0, +1, +2; and for F = 1, MF = -1, 0, +1. 

Finally, Eq. 2B-8 is correct if you let M = MF. 
 
3.  Understanding Fig. 2B-3—the 2S1/2 ground state of 87Rb:  Note that the order of MF with 
increasing energy is not monotonic— (+1, 0 ,-1, -2, -1, 0 , +1, +2).  This can be understood by 
going to the large-B limit where gJ⋅µ0⋅B⋅MJ >> AI⋅J, where MJ = ±1/2.  In this limit, one can 
treat the vectors J and I as being independent, with projections along B of MJ and MI, 
respectively.  Then our Eq. (2) becomes 
  H = A⋅MJ⋅MI + gJ⋅µ0⋅B⋅MJ; 
we ignore the nuclear spin term because it’s small.  
Thus one can categorize these levels by |MJ, MI〉 where 
MF = MJ + MI.  Obviously, the four lowest-energy 
levels at high B are associated with MJ = - ½.  Since 
the A⋅MJ⋅MI term is negative (due to MJ = - ½), then 
the lowest-energy hyperfine-split level must have the 
largest positive MI (=3/2), giving MF = -1/2 +3/2 = +1.  
The next largest energy level must have MI = ½, as 
shown in the table, etc. 

MJ MI MF 
+1/2 +3/2 = 1/2 + 3/2 = +2 
+1/2 +1/2 = +1/2 + 1/2 = +1 
+1/2 -1/2 = 1/2 = -1/2 = 0 
+1/2 -3/2 = 1/2 + -3/2 = -1 
-1/2 -3/2 = -1/2 + -3/2 = -2 
-1/2 -1/2 = -1/2 + -1/2 = - 1 
-1/2 +1/2 = -1/2 + 1.2 = 0 
-1/2 +3/2 = -1/2 + 3/2 = +1 
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4.  A better understanding of Fig. 2D-3.  Let’s assume the circular polarization of the light is 
such that ∆MF = + 1.  Further, let us focus only upon the two highest-energy F = 2 levels (MF = 
+1 & +2) for the 2S1/2 and 2P1/2 states, as shown below.  Since ∆MF = + 1, the only excitation 
(upward solid arrow) allowed by incident light is from the MF = +1 of 2S1/2 to MF = +2 of 2P1/2.  
We are ignoring the possibility of lower-energy states of 2S1/2 feeding into the MF = +1 & +2 
states of 2P1/2.  No upward transition from MF = +2 state of 2S1/2 is allowed because there is no 
MF = +3 state for 2P1/2.  For 2S1/2, all that the MF = +2 state of can do is relax back (downward 
gray arrow) to the lower-energy MF = +1 state.  Such spontaneous relaxation usually occurs due 
to scattering of the Rb atoms by (1) other Rb atoms, or (2) the walls of the cell.  Spontaneous 
emission of photons (downward open arrows) can occur when an electron jumps from the MF = 
+2 state of 2P1/2 to either the MF = +1 or MF = +2 state of 2S1/2.  Such emission of P-to-S state 
photons is not specifically directed toward the detector, so such emission looks like a reduction 
in transmission of light between the lamp and the detector.   

 
 For the S-state: 
  b12 = probability per unit time for #1 → #2 transition via P state 
  b11 =         “          “     “     “      “   #1 → #1 transition via P state 
  w21 =         “          “     “     “      “  #2 → #1 relaxation 
  p1 = probability of occupation of  #1 state 
  p2 =         “          “           “        “  #2 state 
 
   Note: p1 + p2 = 1 

Modifying Eq. 2D-1 for this simpler case (where the b11 transition can be ignored because it does 
not affect the value of p1), we get 

    2211121 pwpbp ⋅+⋅−=      (3) 

 Note: #2 → #1 transition via P state is not possible (b21 = 0), and #1 → #2 “relaxation” in S 
state is not possible (w12 = 0). 

Eliminating p2, we get 
     ( )1211121 p1wpbp −⋅+⋅−= , and 
     ( ) 21121121 wpwbp =⋅++     (4) 

The solution to Eq. (4) is the following, where p1 = 1 at time t = 0: 
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If one takes the t → ∞ limit of Eq. (5), then one obtains 
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If w21 = 0 (no relaxation), then p1 = 0 and p2 = 1.  That is, the #2 state becomes fully occupied 
and the #1 state becomes empty—strong pumping situation.  If w21 < b12 , then Eq. (6) gives p1 < 
1/2 and p2 > 1/2.  The #2 level is still occupied, but the #1 level is not completely depleted—a 
weaker pumping situation.   

If the magnetic field B = 0, then the #2 → #1 relaxation become very rapid because the #1 and 
#2 levels are degenerate.  We can approximate this case with  
w21 → ∞ (w21 >> b12), and Eq. (6) now becomes 
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Now suppose we apply a rf transverse magnetic field that is in resonance for a particular value of 
B, as shown in the cartoon above as a double-headed arrow connecting the #1 and #2 S states.  If 
the rf-field-induced transition probabilities (per unit time) for #1 ⇔ #2 are much larger than b12 
and w21, then the derivation on pages 2-19 & 2-20 of the manual applies.  In the t → ∞ limit, one 
has p1 = ½ and p2 = ½.   

So let’s summarize the results in the t → ∞ limit: 
 (a)  If w21 = 0, then p1 = 0 & p2 = 1, B ≠ 0 situation with no relaxation 
 (b)  If w21 < b12, then p1 < ½ & p2 > ½, B ≠ 0 situation with weak relaxation 
 (c)  If w21 = ∞, then p1 = 1 & p2 = 0, B = 0 situation with strong relaxation 
 (d)  If one applies a strong rf magnetic field in resonance, p1 = ½ & p2 = ½. 

Now let us relate this summary to the transmission of light to the detector.  First define the 
probability per unit time of photon absorption (and re-emission), Pabs: 

     Pabs = (b11 + b12)⋅p1 
As we stated earlier, such emission of P-to-S state photons is not specifically directed toward the 
detector, so such emission looks like a reduction in transmission of light between the lamp and 
the detector.  Thus a higher Pabs corresponds to a lower transmission.  Case (c) corresponds to 
maximum p1 (= 1) which means Pabs is a maximum, giving a minimum transmission (zero-field 
resonance).  Cases (a) & (b) correspond to the “pumping” situation where p1 < 1/2 and Pabs is 
smaller, giving an increased transmission.  Case (d), where a resonant rf magnetic field is 
applied, relates to an intermediate situation where p1 = ½, meaning that Pabs could be between 
those values for case (c) and cases (a) & (b).  Thus for case (d) the transmission at rf resonance 
should be between the zero-field case and the pumping situation.  Perhaps this is the reason that 
the transmission reduction for the zero-field resonance is stronger than that for the rf field 
resonance. 

Note that p2 in Eq. (5) has the form [ ])texp(1p2 α−−∝  where α = (b12 + w21).  Thus when the rf 
field is suddenly turned off, the optical-pumping state recovers at rate α which is proportional to 
b12.  Try to observe this recovery-rate dependence on light intensity (∝ b12). 


	Notes on Optical Pumping Procedure & Theory

