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1. Kaleidagraph Essentials 
Histograms: use menus Gallery|Stat|Histogram|pick data|New.   To Change Bin Size: 
Plot|Plot Options|SpecifyingTheBinSize|OK , then Plot|Axis Options|enter new bin size|OK      

Statistics Highlight data column, then Function|Statistics and either write down results and |OK, or 
|Clipboard|OK and then paste where you want them (Plot, Layout, or Word). 

y vs. x scatterplot (x is horizontal!):  Gallery|Linear|Scatter|select x and y variables|NewPlot     

Curve Fitting CurveFit|General|EditGeneral|Add|NewFit|give new fitname in box|Edit|    Entering equation: say 
want to fit a parabola y = parabola a + b x + c x2.  Kgraph’s convention for the first fit parameter is m1 (and so 
on).  So you could enter in the Edit box:                        

m1 + m2*x + m3*x^2; m1=1; m2=1; m3=1 
where m1 stands for your parameter a, m2 for b, m3 for c. The extra equations give nonzero guesses for the 
parameters which the fit routine must have to start from.  Now, having entered the expression you are fitting, 
OK|OK|CurveFit|General|fitname|check the box|OK                                                                                       If 
you’d wanted an equation of the form C + a cos (k x + b), you’d use m1+m2*cos(m3*x + m4). 
To display the fit equation, Plot|DisplayEquation.  This shows you the fit parameters, and their uncertainties 
(labeled “errors”). The value of m1 is the best fit value of a, etc.  
Moving it: Click ParamsBlock|Cut(Ctrl-X)|Ctrl-L|Layout|SelectPlot|plot|Paste(Ctrl-V)|Drag ParamsBlock;       
Ctrl-L is equivalent to Windows|ShowLayout|KgraphLayout 

Plot Resizing: Right-click within plot | SetPlotSize | click both Axis and Frame size | Enlarge Frame size Y, but 
to less than paper size | drag Fit Parameters block to below the plot. 

Residuals: To make a new column in the data window containing fit residuals, immediately after you’ve 
performed the fit (or redone the fit):  CurveFit|General|fitname|View|CopyResiduals.  Find the right data 
window by clicking on the small grid in the upper right of the plot window;                                                             
you can edit the data window column heading by double-clicking it.   

If the function fit doesn’t look much like the data, you probably need to give better initial values than 1.  
Do this by CurveFit|General|fitname|Define| then edit the initial values in the box: 
     m1 + m2*cos(m3*x + m4); m1=45; m2=10; m3=30; m4=180 
Why might these be better values?  The C constant (m1) should be near the average y value; the m2 should be 
the amount above or below the average; m3 should be such that the range Δx of one cycle of x has Δx*m3=360 
degrees (if Degrees is checked) or 2π if Radians is checked; and 180 (Degrees) would be appropriate for a 
maximum the middle of the range. 

Remove a previous fit: CurveFit|General|fitname|Deselect 

Multiple Plots per page:  Windows|ShowLayout|click on layout| then a Layout menu appears.  
Layout|SelectPlot|click on plot| for the plots you want on the page (2 or 3 will be big enough to read).  Then 
Layout|ArrangeLayout| and select say 2 or 3 rows and one column to arrange your plots.  You can drag, resize, 
or delete the plots; add text; or paste a clipboard.  

It’s really best to just jump in, but the Kgraph tutorial (examples 2&4) offer more detail. 

Recover data from a plot:  click on the little grid on upper right of plot.   Also use to update data of plot. 
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2. Introduction to EXCEL (and Tutorial) 
This introduction will show you the basics you need for this lab. Open Excel by double-clicking the icon with 
the mouse.  Then open a new spreadsheet by File | New (and possibly Blank Workbook).   Files that end in 
“.xls,” are Excel spreadsheets.  You can copy and paste data from the Excel spreadsheet to the Kgraph 
spreadsheet. Kgraph can open a spreadsheet too, and if it’s just data and single-cell column headers in row 1, it 
will label the columns.   
The Excel spreadsheet is made up of rectangles called “cells.”  To enter text into a cell, click on the cell with the 
mouse, type the desired text, and press Return or Enter.  To execute a formula in a cell, you must always first 
type “=” (an equals sign), followed by the desired formula.  For example, to compute 5+6, type “=5+6” into an 
empty cell and press “Enter.”  The answer, “11,” appears in the cell where you entered the formula.  The 
formula you entered in the cell appears at the top of the screen under the menu bar.  This works for any cell:  to 
see a formula, just click on the cell and the formula for that cell appears at the top of the spreadsheet. 
 
Now we will fill a column A labeled X with numbers ranging from 0 to 1.4 in steps of 0.2.  Do not take the 
time to do this all by hand!  You can have Excel do it for you.  In cell A1 enter X and type Enter.  In the next 
cell of the column, A2, enter 0, our first value. Then in A3, we can give Excel a formula we want it to follow in 
order to fill in the rest of the column.  In each cell, we want it to add 0.2 to the value in the cell just above.  That 
will fill in the column in steps of 0.2.  Therefore in cell A3 enter the formula “=A2+0.2” and press return.  
Highlight 7 cells of the column, starting with the cell that has the formula in it, A3.  Then go to Edit | Fill | 
Down and then let go of the mouse button.  Your column should be filled in increments of 0.2.   
 
In the next column B (Label it Sin(x) in B1) you are going to compute the sine of X using a formula.  In B2 
type “=Sin(A2)” and hit Return.  By typing A2 in the parentheses we are telling Excel to take the sine of the 
value (in radians) which it finds in A2.  Then you can use the same process as above to “fill-down” the entire 
column. If you do this just as described above, Excel knows to start with A2, take the sine of each successive 
value in the A-column, and place the new value in each successive cell of the B-column.  Now repeat this same 
procedure, only this time for cosine X in the C-column.   

More hints: 
● If in doubt, use parentheses to make sure things get calculated in the right order.  For example, 3 + 5/2 results 
in 5.5, but (3 + 5)/2 results in 4.  It would have been better to use 3 + (5/2) in Excel for the first case. 
● To check your spreadsheet formulas, type Ctrl-` (that is, hold down the Ctrl key and type the ` key (which 
has a ~ above it).  If you now print your spreadsheet, you can see all the formulas.  Save it with a new name, 
adjust the column width, and use page setup to print landscape, say to fit to 2 pages wide x 1 tall.  You can use 
Print Preview before printing to check. 
● Typing   Ctrl-` again toggles back to showing the calculated numbers. 
● Instead of typing a cell number (say O27) you can click on the cell while entering the formula. 
● You can change formatting with the % and .00 → .0 and .0 → .00 buttons. 
● The formula   =A17   copies the contents of cell A17 to the cell containing the formula. 
 
Copying formulas:         The menu command Edit | Fill | Down is equivalent to: 
click the cell with the formula   cell will be highlighted, with dark borders 
hover mouse on lower right corner  mouse pointer turns from a hollow to a solid cross 
drag the mouse down over more cells  the formula is “copied” 
 
When the formula is copied, the cell references change automatically!  So if your formula in A3 was A2+.2, 
when it is filled or dragged down to cell A4, it becomes A3 + .2 ; if you are doing the same set of calculations 
on a whole column of numbers, you can set up the formulas in the first row, then highlight and drag down the 
formulas in several columns at once. 
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A similar process allows you to copy formulas sideways (across columns), or copy and paste into another 
column. Put 100 in D2.  Next, enter =D2 in D3 to copy D2’s contents.  Now highlight A3:A8, hit copy (Ctrl-c) 
and then move the mouse to D4 and paste (Ctrl-v).  This fills the D column with numbers spaced by .2, but 
starting from 100. 
 
Sometimes this automatic renumbering isn’t what you want to do, so you need to be able to stop Excel from 
adjusting cell numbers.  One way to always refer to single cell is to give it a name.  Type 10 into cell E1.  
Highlight E1, then click your mouse in the name box (it will say E1) left of where the formula appears. Type 
fred there and when you use the name fred in your formulas and it will always refer to that specific cell.  Enter 
in E3 the formula =fred^A3 and copy it down through E4:E9.  You should see numbers ranging from 1.58 
through 25.12 in the E column. 
 
When your spreadsheet is complete, make sure you save and print! 
 

Common operations in Excel 
you can substitute cells for numbers with these operations 

 
What?  Mathematics  Excel Equation  Value 
Addition  11 + 12  = 11 + 12   23 
Subtraction  29 – 21  = 29 – 21   8 
Multiplication  30 × 15  = 30 * 15   450 
Division  44 / 12   = 44/12   3.66666667 

Example  73
25

43 ×−
×

+  = 3 + (4/(5*2) – (3*7)) 17.6 

Power   6.3   = 6^(.3)   1.7117 
Exponential  e6.1   = exp(6.1)   445.86 
Square Root  22 43 +   = sqrt ( 3^2 + 4^2)  5 
Sine or Cosine Sin(x) or Cos(x) = sin(x)   or = cos(x)  x = .5 (radians): sin = .479 
Pi   Cos (2 π x)  = cos(2*pi()*x)  .809 for x = .1 
 
Operations on groups of cells: use as an example cells   A3…A9  containing   .2, .4, …. 1.4 
The group can be denoted by A3:A9, or you can highlight a group of cells while entering the formula 
 
Sum   ∑ ai   = sum(A3:A9)   5.6 
Mean      = average(A3:A9)  0.8 
Standard Deviation    = stdev(A3:A9)   . 316 
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3. Significant Figures 

In calculations, it is always important to distinguish significant figures (s.f.) from insignificant figures in 
the final presented numbers. The rules in Taylor section 2.2 describe things rather well.  We add the 
following comments.  

1. The smallest digit in the final reported value should be of the same order as the smallest significant 
digit of the uncertainty.  Since the error of the measurement is only an estimate of the uncertainty of the 
measurement, we keep only the two most significant digits (when available); we keep 2 s.f. so we can 
calculate t values to 2 s.f.   Examples:  

Incorrect  Correct 

517.436 m ± 12.34 cm or ± 2.3% (avoid mixed units) 517.44 ± 0.12 m 

24.3441364 ± 0.0023 m/s 24.3442 ± 0.0023 m/s  sig fig in answer match error 

12385 s  ± 241 s         12390 ± 240  s  or better  (1.239 ± .024)×104 s  

 
2. Perform intermediate calculations to a few more figures than you know to be significant (this 
avoids inadvertent loss of significance) and apply rule 1 for final results.   
 
Rules 3-5 describe which digits are the minimum that are known to be significant.  These rules also 
help when you have no explicit uncertainty calculation at the end, and are just calculating from inputs 
with a fixed number of significant digits. 
 
3. When adding or subtracting two numbers, the result should have the same number of the significant 
digits after the decimal point as the least precise summand. Example:  

 
4. When multiplying or dividing, the result should have the same total number of the significant digits as 
the least precise multiplier. Example:  

1234.3 × 23.45 ≈ 28940 
5. For other operations (raising to power, square root, exponent, sine) a rough and ready rule is to keep 
at least as many significant digits in the final result as you had in the input. Example:       
Sin(3.567 radians) = - .4127 
Complex functions can increase or decrease the number of actual significant digits by 1, depending on 
the function and the argument.  For example 
   Sin(3.567 radians) = - .4127;   Sin(3.568) = -.4136        lost nearly 1 digit: .4127 ± .0009 
  But              √6.567 = 2.5626;         √6.568 = 2.5628       gained 1 digit:    2.5626 ± .0002 
Raising to powers > 1 may lose significant digits, and powers < 1 may gain them. 
 
6. More subtle points: when you average many measurements, the standard deviation of the mean becomes 
small compared to the least significant digit of individual measurements, indicating that the mean has more 
significant digits than the individual measurements.  This will normally be covered by following rules 1 and 2.  
Similarly, if you wish to calculate a t value to 2 significant digits (in order to compare it with 2.0, as 
suggested in the Uncertainty Calculations section below), you will need to estimate your uncertainty to 2 
significant digits. 
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  4. Uncertainty Calculations: Critical Things to Know 
 
Justify your uncertainty:   Give a specific reason you chose δx as the uncertainty for the measurement of x.  
See examples in Taylor §1.5; §3.1-3.2; and §1.6, §4.1-4.6 for standard deviation and standard deviation of a 
mean for repeatable measurements. 
        
Compatibility (§1.3, 2.4-2.5): The whole point of quantitative measurement with uncertainties is to test 
hypotheses, and compare results.  Say you measure q, and you compare it to p (the expected value).  Define 
the discrepancy as the difference of your result from the result expected by some hypothesis: 
 

 D = q – p = measured - expected       .  
 
The best way to describe the degree of discrepancy of p and q is in terms of the number of standard deviations 
(the “t value”) of their difference from expectations: 
 

  t = D / δD    δD is the uncertainty of D (its standard deviation, for Gaussian uncertainties).  
 
The “two standard deviations” rule says p and q are compatible as long as |t| ≤ 2 .  
 
Typically δD = δq ⊕ δp = √(δq2 + δp2)  (that is, ⊕ means addition in quadrature).  δD is just δq if p is well 
known (so δp is tiny). Best practice is to calculate t, then say something like “the difference is 1.6 times its 
uncertainty, so the measurements are compatible by the 2 standard deviation rule.”  If |t| > 2, we would call p 
and q statistically incompatible, or call their difference statistically significant. To obtain a t value of 2 
significant digits, keep 2 s.f. in uncertainties. 
 

If your uncertainties are Gaussian, and correctly estimated, and the assumptions (hypothesis) leading to the 
expected value are also correct, a |t| > 2 deviation would occur by chance only about 5% of the time.  So large |t| 
values suggest real disagreement from what you expected, while small |t| values are compatible—not proven to 
disagree.  If you measure poorly (δD is large), your result is compatible with almost anything: not a very useful 
measurement. 

 
Occasionally we use a simpler criterion compares |D| with δq + δp (the worst case for δD, but allowing only 

1 standard deviation difference): this is just “do the error bars touch”. 
 
We are often also interested in the fractional deviation the measured value from what we expected, which is 

just D/p = (q-p)/p .  The D(%)  (% deviation or % difference) is the same thing expressed in percent.  D/p or 
D(%) is all we can report if we don’t know δD.  But just because the percent difference is small, does not 
necessarily make it insignificantly different statistically.  That’s what the t criterion is for. 
 
 
Standard Deviation and Standard Deviation of the Mean 
The standard deviation ( σ ) is a measure of the uncertainty of any single measurement.  The standard deviation 
of the mean, σm = σ/√N , is a measure of the uncertainty of an average of N such measurements.  Clearly, the 
average is better known than a single measurement. 
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Key uncertainty formulas for random independent errors 
 
Know the Uncertainty Calculation Formulae (§3.3-3.7; 3.11) on inside covers of Taylor, and how/when to 
use them.    
q = x + y   OR   q = x - y 

δq = δx  ⊕  δy  where ⊕  is addition in quadrature: 
            δx⊕ δy = sqrt (  δx^2 + δy^2) 
        > δx    and   > δy 
   q, x, y all must have same units (so I can add q + δq: error bars) 
q = x * y     OR   q = x / y 

δq/q  =  δx/x ⊕ δy/y      I can always add fractional errors, since δx/x and δy/y are both dimensionless 
      (can write as a fraction, or as %, but watch the factor of 100!) 
         don’t forget the last step!     δq = q (δq/q)  
q = B x     (B a constant) 

δq = B δx or δq/q = δx/x (since δB/B = 0) 
 
q = xn  ym 

δq /q =  (n δx/x)  ⊕  (m δy/y)    = sqrt {    (n δx/x)^2   + (m δy/y)^2)  } 
     be sure the power is inside the parenthesis 
 simple case q = x2 δq / q = 2 δx / x  NOT   √2  δx / x:  

the two terms  in q = x * x  are correlated, not independent 
 

The  General  Formulas 
 

δq = (∂q/∂x) δx ⊕ … ⊕  (∂q/∂z) δz  where ∂q/∂x  means take the usual derivative wrt x, 
   assuming everything but x is constant  (“partial derivative”) 

It’s easier to use finite differences (eg in spreadsheets): 
δq = δqx ⊕  …  ⊕  δqz  = | q(x+δx) –q(x) |  ⊕ …. ⊕  | q(z + δz) – q(z) | 
 
The general formula of course gives all the others, but requires more algebra:  for example: 
 q = x yn 
 δq = yn δx   ⊕  x n yn-1 δy,   which after some work can be simplified to the usual expression: 
 δq / q = δx / x  ⊕  δy / y 
 
How to check your calculations to see if they make sense: 
q = x + y            always must have: δq > max (δx , δy)       no bigger than √2 times the larger one 
q = x*y or x / y always must have δq/q > max (δx/x, δy/y)    no bigger than √2 times the larger one 
 
Independent measurement: no relationship in the imperfections between the measurements; e.g. 2 students 
measure the same distance each with a different, but good, ruler.  A measurement dominated by a systematic 
error (same shrunken ruler used by both students) would produce results that aren’t independent.  See Chapter 
4; needed to apply Chapter 3 formulas. 
 
Random: you expect to get slightly different values each time you measure it: due to reading uncertainties, 
varying judgments, uncontrollable factors, or inherent properties of the measurement. 
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Examples 
q = x/y  Often easiest to do in terms of %         

 x = 10      δx = .10     y = 2.7       δy = .20   so q = 3.7 
            δq/q = √(1.0% + 7.4%) = 7.5%   so  δq ≈ .075×q ≈ .27  (notice 7.5% → .075, a factor of 100) 
 
Whip out your calculator now: Let’s try  r=10    and    δr = .10, so what’s the fractional error for r?      

δr/r = 1.0%  Now say q= r2 then what’s δq/q = ?  
 
From Eq 3.23, 3.26:   

δq / q = ( |dq/dr| δr ) / r2 = 2 δr / r = 2%     
For comparison, you can calculate changes in q directly (the most general way, rather than the Chapter 3 
formulas, which rely on first derivative approximations):  

(q + δq)/q = (r+δr)2 / r2 = 102.01/100 = 1.0201 =  (q + δq) / q , so δq/q = 2.01%   
(the same as above, as δq → 0) 

 
A More Complicated Example Calculation (See Step by Step: Taylor Chapter 3.8) 
q = x2 y + z1/ 3     x = 10 ± .10     y = 20 ± .20       z = 10000 ± 1800 

δx/x = 1.0% δy/y = 1.0%   δz/z = 18% 
 
let w = z1/ 3  = 21.54    x2y =2000    and q = 2021.54 
 
Let’s start with the product term:   x2y  
 
δ (x2y) / (x2y) =  √{ (δx2/x2)2 + (δy/y)2 } =   √{ (2 ×1%)2 + (1%)2 } = 2.2 %  
 notice we have used δ x2 / x2 = 2 δx/x: the 2 goes inside the parentheses! 
 
so δ x2y = x2y × (δ x2y / x2y) = 2000 × (22%) = 44 
 
Now δw/w = 1/3 (δz/z) = 1/3  × 18%= 6%, so   δw = 6% × w  ≈ .95  
  Here w has more significant digits than z: 21.54 ± .95 compared to (10.0 ± 1.8) × 103  ! 
 
Finally, since q = x2y + w,  δq= √ { (44)2 + (.95)2 } ≈ 44 
 
So q = 2021.54 ± 44, or 2022 ± 44 = (2.022 ± .044) × 103 after significant figures. 
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5. Log Plots and Guessing Functional Relationships 
In Kgraph, from Plot | Axis Options you can choose Linear (default) or Log (logarithmic) for either the x or y 
axis.  Let’s see how this might help you:  For this discussion, we will assume logarithmic means natural 
logarithms, log to the base e. See also Taylor §8.6 .  In Kgraph you can select Log from Plot | Axis Options, or 
make a new data column with, e.g.  ln(c5) or log(c5).  When using log scales, you should also use Plot | Axis 
Options to choose minima and maxima so that your displayed data fills much of the plot area, not just a small 
corner. 
 
1) Semi-log plots 
Suppose the true relationship is something like y = y(x) = e-ax  (the constant a might be positive or negative).  If 
you plot y on a log scale and x on a linear scale, this is a semi-log plot (logarithmic on only one axis).  Then you 
would be looking at Ln(y) vs. x, and substituting the true relationship y(x), your plot would display -ax vs. x.   
That is, exponential relationships produce straight lines on a semi-log plot and the slope is equal to the 
coefficient of x in the exponent.  To find the slope, you could perform either the nonlinear fit y = Exp(- a x), or 
a linear fit to the semi-log plot, fitting Ln(y) = -a x.  These fits will give somewhat different answers as equal 
weighting in y assumes different uncertainties than equal weighting in Ln(y). 
 
2) Log-Log plots 
Suppose now the relationship between y and x is of the form yp = a xq .  A linear relationship ( y = a x, with no 
additive constant) is a special case with  p = q = 1.  Assuming y and x are positive, you can take the p-th root 
and recast of this relationship as y = y(x) = b xu, where b = a 1/p and u = q/p.  
 
If you plot both x and y on a logarithmic scale, it’s a log-log plot.   Then you would be looking at 
 Ln(y) vs. Ln(x) , which, on substituting the true dependence y(x) would yield  
 Ln(b) + u Ln(x)   vs. Ln(x) 
That is, power relationships of the form yp = a xq  produce straight lines on a log-log plot.   
The slope is the power u, to which x is raised to give y.  For y = x2, on a linear plot you get a parabola—not 
straight.  But a log y vs. log x plot (for x > 0 !) gives a straight line of slope u=2. 
 
You can find this slope by rise over run by measuring distances directly on the graph: 
 u =  [ Ln(y1) – Ln(yo) ] / [Ln(x1) – Ln(x0) ]   
This works directly from the plot, as long as the y and x scales are the same.  It’s the same as 
 u = Ln(y1/yo) / Ln(x1/xo) 
which makes it obvious that the units cancel, and all that matters is that a given factor (e, or 10, say) takes up 
the same amount of space on the y and x axes.  You could also use either formula with coordinates of points on 
the line. 
Or you could perform either the nonlinear fit y = b xu, or a linear fit to the log-log plot, fitting  
Ln(y) =b + u Ln(x).  These fits will give somewhat different answers as equal weighting in x or y assumes 
different uncertainties than equal weighting in Ln(x) or Ln(y). 
To really test these relationships well, you should ideally: 
 Compare the fit quality with an alternative, such as a straight line 
 Have more than 3 data points 
 Have data covering at least a factor of e2 (= 7.4) to 10 in range of x and y. 
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6. Using a Vernier Caliper  
 
A vernier caliper consists of a high quality metal ruler with a special vernier scale attached which allows the 
ruler to be read with greater precision than would otherwise be possible.  The vernier scale provides a means of 
making measurements of distance (or length) to an accuracy of a tenth of a millimeter or better.  Although this 
section will be devoted to the use of the vernier caliper, vernier scales can also be used to make accurate 
measurements of other quantities, such as angular displacements. 
 

JAWS

SAME DISTANCE AS
BETWEEN JAWS

INCH

CM

VERNIER SCALE

RULE

0 108642

0

0 5 10 15 20 25

1 2 3 4 5 6 7
1 2

987654321

 
 

Figure 1:  Vernier Caliper 
 
Looking at the vernier caliper in Fig. 1, notice that while the units on the rule portion are similar to those on an 
ordinary metric ruler, the gradations on the vernier scale are slightly different.  The number of vernier 
gradations is always one more than the number on rule for the same distance.  The line on the vernier which is 
aligned with one on the rule tells us the fraction of the units on the rule.  
To use the vernier caliper: 
(1) Roll the thumb wheel until the jaws are completely closed (touching each other). Now check whether 
the caliper is reading exactly zero.  If not, record the caliper reading, and subtract this number from each 
measurement you make with the caliper. 
(2) Use either the inside edges of the jaws, or the outside edges of the two prongs at the top of the caliper to 

make your measurement.   Do not use the tips of the prongs.  Roll the thumb wheel until these surfaces 
line up with the end points of the distance you are measuring. 

(3) To read the caliper: 
 (a) record the numbers which correspond to the last line on the rule which falls before the index line 

(marked as 0) on the vernier scale.  In Fig 1, this would be 1.4 cm since the index line falls after the 
1.4 cm line and before the 1.5 cm line. 
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 (b) count to the right on the vernier scale until you reach a vernier line which lines up with a line on the 

rule and record the number of this vernier line as your last digit.  In Fig 1, it is the vernier line marked 
4 (rather than the 4.5 line, say) which is aligned with one on the rule.  The full vernier scale 
corresponds to one small division on the main scale, that is, .1 mm, so the vernier tells us to add .4 * 
.1 = .04cm, so the whole distance is 1.440 cm. 

Alas, the inch scale vernier of Fig 1 is not marked correctly; the correct corresponding reading would be .567 
inches, so the inch vernier should have lined up at about 17 instead of 25: .55 inches + .017inches). 
 
The following examples show vernier scales similar to that on the vernier caliper, to allow you to test your 
ability to read a vernier caliper. 
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