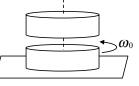
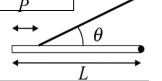
Form C

- 1. A car travels at a constant speed around a flat circular track with a radius of 50.0 m and takes 1.00 minute to complete one revolution. What is the centripetal acceleration of the car?
- A) 6.28 m/s^2
- E) 0.732 m/s^2
- $B) 5.34 \text{ m/s}^2$
- F) 2.21 m/s^2
- C) 0.652 m/s^2 D) 0.220 m/s^2
- $(G) 6.91 \text{ m/s}^2$
- H) 0.548 m/s^2
- $a_c = v^2/r$ $T = 2\pi r/v \Rightarrow v = 2\pi r/T$ $= (2\pi/T)^2 r = (2\pi/60 \text{ s})^2 (50.0 \text{ m}) = 0.548 \text{ m/s}^2$
- 2. The mass and radius of the moon are 7.4×10^{22} kg and 1.7×10^6 m, respectively. What is the mass of an object with a weight of 1.71 N on the surface of the moon?

$$(G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2)$$


- A) 1.00 kg
- E) 0.67 kg
- B) 3.73 kg
- C) 8.81 kg D) 4.35 kg

$$W = mg_{\text{moon}} \quad g_{\text{moon}} = GM_{\text{moon}} / R_{\text{moon}}^{2}$$
F) 1.17 kg
G) 2.97 kg
H) 5.82 kg
$$m = W / g_{\text{moon}} = \frac{(1.71 \text{N})(1.70 \times 10^{6} \text{ m})^{2}}{(6.67 \times 10^{-11} \text{ Nm}^{2}/\text{kg}^{2})(7.40 \times 10^{22} \text{kg})} = 1.00 \text{ kg}$$


- 3. A spaceship is in orbit around the earth at an altitude of 19,290 km. Which one of the following statements best explains why an astronaut experiences "weightlessness"?
- A) The centripetal force of the earth on the astronaut in orbit is zero.
- B) The pull of the earth on the spaceship is canceled by the pull of the other planets.
- C) The location of the spaceship is equidistant between the earth and the moon.
- D) The force decreases as the inverse square of the distance from the earth's center.
- E) The force of the earth on the spaceship and the force of the spaceship on the earth cancel because they are equal in magnitude but opposite in direction.
- F) The spaceship is in free fall so its floor cannot press upward on the astronaut.
- G) The earth's gravitation force is balanced by the centrifugal force on the astronaut.
- H) Since the spaceship is above the atmosphere, no air presses down on the astronaut.
- 4. An airplane engine starts from rest; and 2 seconds later, it is rotating with an angular speed of 420 rev/min. If the angular acceleration is constant, how many revolutions does the propeller undergo during this time?
- A) 24
- E) 150
- B) 14 C) 21
- F) 17
- G) 7
- D) 49
- H) 1200
- $\theta = \frac{1}{2}(\omega + \omega_0)t = \frac{1}{2}(420 \text{ rev/min})(\frac{1}{30} \text{ min}) = 7.0$
- 5. A hollow sphere of radius 0.25 m is rotating at 13 rad/s about an axis that passes through its center. The mass of the sphere is 3.8 kg. Assuming a constant net torque is applied to the sphere, how much work is required to bring the sphere to a stop? Note: moment of inertia of a hollow sphere, $I_S = \frac{2}{3}MR^2$.
- A) 1.02 J
- E) 16.3 J
- B) 3.83 J
- F) 19.9 J
- C) 13.4 J
- G) 2.72 J
- D) 25.5 J H) 8.54 J
- $W = \Delta K = \frac{1}{2}I\omega^2 = \frac{1}{3}MR^2\omega^2$ $=\frac{1}{3}(3.8 \text{kg})(0.25 \text{m})^2(13.0 \text{ rad/s})^2 = 13.4 \text{ J}$

Form C

- 6. A string is wrapped around a pulley of radius 0.20 m and moment of inertia 0.40 kg. m². The string is pulled generating an angular acceleration of 14.0 rad/s². With what magnitude of force was the string pulled?
- A) 14.0 N
- E) 22.0 N
- B) 28.0 N
- F) 17.0 N
- C) 19.0 N
- G) 21.0 N
- D) 35.0 N
- H) 33.0 N
- $F = I\alpha / R = (0.40 \text{ kg} \cdot \text{m}^2)(14 \text{ rad/s})/(0.20 \text{m})$ $= 28.0 \,\mathrm{N}$
- 7. A solid disk with a mass of 0.50 kg is rotating on a frictionless surface with an angular speed of 15.0 rad/s. Another disk just above the first with the same radius is dropped onto the lower disk. Kinetic friction between the disks brings both disks to a common angular speed of 3.00 rad/s. What is the mass of the top disk?

- A) 0.50 kg
- E) 2.50 kg
- B) 1.00 kg
- F) 3.00 kg
- C) 1.50 kg
- G) 4.00 kg
- D) 2.00 kg
- H) 5.00 kg
- $L_0 = L$, $I_0 \omega_0 = I \omega = (I_0 + I_{\text{top}}) \omega$ $I_{\text{top}} = I_0(\omega_0 - \omega)/\omega = I_0(15-3)/3 = 4I_0$ $M_{\text{top}} = 4 M_0 = 2.00 \text{ kg}$
- 8. A board in equilibrium has a mass of 23.0 kg, length 25.0 m is pivoted about one end. A rope tied a distance of 5.00 m from the other end makes an angle of 15° with the board. What is the magnitude of the force F?

- A) 545 N
- E) 962 N
- B) 495 N C) 445 N
- F) 743 N
- D) 395 N
- G) 689 N H) 595 N
- $\Sigma \vec{\tau}_i = 0$ $\vec{\tau}_1 = -(L P)F \sin \theta$: $\vec{\tau}_2 = (L/2)mg$ $F = \frac{(L/2)mg}{(L-P)\sin\theta} = \frac{(12.5\text{m})(23.0\text{kg})(9.81\text{N/kg})}{(20\text{m}\cdot\sin 15^\circ)} = 545\text{ N}$
- 9. The maximum compression

stress that a bone can withstand is 1.60×10^8 N/m² before it breaks. A thighbone (femur), which is the largest and longest bone in the human body, has a cross sectional area of 7.70×10^{-4} m². What is the maximum compression force that can be applied to the thighbone?

- A) 2.10×10^{11} N
- E) 5.40×10^7 N
- B) $1.23 \times 10^5 \text{ N}$
- F) 1.20×10^6 N
- C) 4.80×10^{12} N D) $3.00 \times 10^{3} \text{ N}$
- G) 8.70×10^5 N H) 4.23×10^9 N
- $\frac{F}{A}$ < 1.6 × 10⁸ N/m² $F < (1.6 \times 10^8 \text{ N/m}^2)(7.70 \times 10^{-4} \text{ m}^2) = 1.23 \times 10^5 \text{ N}$
- 10. A force of 250 N is applied to a hydraulic jack piston that is 0.02 m in diameter. If the piston that supports the load has a diameter of 0.15 m, approximately how much mass can be lifted by the jack? Ignore any difference in height between the pistons.
- A) 250 kg
- E) 5600 kg
- B) 700 kg
- F) 3300 kg
- C) 1400 kg
- G) 990 kg
- D) 2800 kg
- H) 1700 kg
- $P_1 = P_2$, $F_1 / A_1 = F_2 / A_2$, $F_2 = \left(\frac{A_2}{A_1}\right) F_1 = \left(\frac{d_2}{d_1}\right)^2 F_1$

$$m = \frac{F_2}{g} = \left(\frac{d_2}{d_1}\right)^2 \frac{F_1}{g} = \left(\frac{0.15}{0.02}\right)^2 \frac{250 \text{ N}}{9.81 \text{ N/kg}} = 1400 \text{ kg}$$

Form C

11. A balloon inflated with a gas (density = 0.5 kg/m^3) has a volume of $6.00 \times 10^{-3} \text{ m}^3$. If the buoyant force $(F_{\rm B})$ exerted on the balloon is 0.0765 N, what is the density of the air?

- A) 1.10 kg/m^3
- E) 0.13 kg/m^3
- B) 1.60 kg/m^3
- F) 2.10 kg/m^3
- C) 0.09 kg/m^3
- G) 1.50 kg/m^3
- D) 0.11 kg/m^3
- H) 1.30 kg/m^3

$F_{\rm B} = \rho_{\rm f} V g$
$\rho_{\rm f} = F_{\rm B} / Vg = (0.0765 \text{N})/(6 \times 10^{-3} \text{m}^3 \cdot 9.81 \text{N/kg}) = 1.30 \text{ kg/m}^3$

12. You want to fill a 0.0189-m³ bucket with water to wash your car. Water exits a hose with a speed of 0.61 m/s. The radius of the faucet is 0.0078 m. How long does it take to fill the bucket completely?

- A) 9.30 s
- E) 162 s
- B) 17.0 s
- F) 199 s
- C) 28.4 s D) 49.3 s
- G) 57.9 s
- H) 21.3 s
- $V = Avt = \pi r^2 vt$ $t = V / \pi r^2 v = 0.0189 \text{m}^3 / \left[\pi (0.0078 \text{ m})^2 (0.61 \text{m/s}) \right] = 162 \text{ s}$

13. In level flight of an airplane weighing 1.92×10^4 N, the air speed over the top of each wing is 62.0 m/s and the air speed beneath each wing is 54.0 m/s. If the density of the air at this altitude is 1.29 kg/m³, what is the surface area of each wing of the airplane?

- A) 19.2 m^2
- E) 34.3 m^2
- B) 13.3 m^2
- C) 21.7 m^2 D) 5.37 m^2

E) 34.3 m²
F) 25.4 m²
G) 29.0 m²
H) 16.0 m²

$$= P_2 - P_1 = \frac{1}{2} \rho \left(v_1^2 - v_2^2 \right) = F / A_{\text{two-wings}}$$

$$= \frac{F}{\rho \left(v_1^2 - v_2^2 \right)} = \frac{1.92 \times 10^4 \text{ N}}{1.29)(62^2 - 54^2) \text{N}} = 16\text{m}^2$$

14. Steel has a Young's modulus $2.00 \times \overline{10^{11} \text{ N/m}^2}$ and a coefficient of thermal expansion that is $12.0 \times 10^{-6} \, (^{\circ}\text{C})^{-1}$. A steel beam at 10 °C is constrained to a length of 2.50 m. A pressure of 7.20×10^7 N/m² is generated at each end of the beam at what temperature?

- A) 15.0 °C
- E) 35.0 °C
- B) 20.0 °C
- C) 25.0 °C
- D) 30.0 °C
- H) 50.0 °C

E) 35.0 °C
F) 40.0 °C
G) 45.0 °C
H) 50.0 °C

$$\Delta T = \frac{P}{Y\alpha} = \frac{7.20 \times 10^7 \text{ N/m}^2}{(2.00 \times 10^{11} \text{ N/m}^2)(12.0 \times 10^{-6} \text{ °C}^{-1})} = 30 \text{°C}, \quad T = 40 \text{°C}$$
The same in

15. How many molecules are in

0.088 kg of carbon dioxide, CO_2 ? (atomic masses: C = 12 u; O = 16 u. (Avogadro's number is 6.02×10^{23} /mol)

- A) 6.02×10^{24}
- E) 1.20×10^{24}
- B) 3.01×10^{24}
- F) 4.81×10^{24}
- C) 2.79×10^{24}
- G) 5.41×10^{23}
- D) 1.83×10^{23}
- H) 6.02×10^{26}

$$N = N_A n = N_A m (\text{in g}) / m (\text{in u})$$
 u = atomic mass unit
= $(6.02 \times 10^{23})(88) / (44\text{u})$
= 1.20×10^{24}

16. Helium atoms at 450 K have an RMS speed of 1675 m/s. What is the speed of the helium atoms if the temperature is raised to 900 K?

- A) 2370 m/s
- E) 2970 m/s
- B) 3350 m/s
- F) 1920 m/s
- C) 3770 m/s D) 3550 m/s
- G) 4280 m/s H) 3940 m/s

$$\frac{1}{2}m\overline{v_1^2} = \frac{3}{2}k_BT_1 \quad \frac{1}{2}m\overline{v_2^2} = \frac{3}{2}k_BT_2 \quad v_{RMS} = \sqrt{\overline{v^2}}$$

$$v_{RMS2} = v_{RMS1}\sqrt{T_2/T_1} = 1675\,\text{m/s}\sqrt{900/450} = 2370\,\text{m/s}$$