1. A car travels at a constant speed around a flat circular track with a radius of 50.0 m and takes 1.00 minute to complete one revolution. What is the centripetal acceleration of the car?
A) $6.28 \mathrm{~m} / \mathrm{s}^{2}$
B) $5.34 \mathrm{~m} / \mathrm{s}^{2}$
C) $0.652 \mathrm{~m} / \mathrm{s}^{2}$
D) $0.548 \mathrm{~m} / \mathrm{s}^{2}$
E) $0.732 \mathrm{~m} / \mathrm{s}^{2}$
F) $2.21 \mathrm{~m} / \mathrm{s}^{2}$
G) $6.91 \mathrm{~m} / \mathrm{s}^{2}$
H) $0.220 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
a_{c} & =v^{2} / r \quad T=2 \pi r / v \Rightarrow v=2 \pi r / T \\
& =(2 \pi / T)^{2} r=(2 \pi / 60 \mathrm{~s})^{2}(50.0 \mathrm{~m})=0.548 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

2. The mass and radius of the moon are $7.4 \times 10^{22} \mathrm{~kg}$ and $1.7 \times 10^{6} \mathrm{~m}$, respectively. What is the mass of an object with a weight of 1.71 N on the surface of the moon?
($G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$)
A) 0.67 kg
B) 3.73 kg
C) 8.81 kg
D) 4.35 kg
E) 1.00 kg
F) 1.17 kg
G) 2.97 kg
H) 5.82 kg

$$
\begin{aligned}
& W=m g_{\text {moon }} \quad g_{\text {moon }}=G M_{\text {moon }} / R_{\text {moon }}^{2} \\
& m=W / g_{\text {moon }}=\frac{(1.71 \mathrm{~N})\left(1.70 \times 10^{6} \mathrm{~m}\right)^{2}}{\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(7.40 \times 10^{22} \mathrm{~kg}\right)}=1.00 \mathrm{~kg}
\end{aligned}
$$

3. A spaceship is in orbit around the earth at an altitude of $19,290 \mathrm{~km}$. Which one of the following statements best explains why an astronaut experiences "weightlessness"?
A) The spaceship is in free fall so its floor cannot press upward on the astronaut.
B) The pull of the earth on the spaceship is canceled by the pull of the other planets.
C) The location of the spaceship is equidistant between the earth and the moon.
D) The force decreases as the inverse square of the distance from the earth's center.
E) The force of the earth on the spaceship and the force of the spaceship on the earth cancel because they are equal in magnitude but opposite in direction.
F) The centripetal force of the earth on the astronaut in orbit is zero.
G) The earth's gravitation force is balanced by the centrifugal force on the astronaut.
H) Since the spaceship is above the atmosphere, no air presses down on the astronaut.
4. An airplane engine starts from rest; and 2 seconds later, it is rotating with an angular speed of $420 \mathrm{rev} / \mathrm{min}$. If the angular acceleration is constant, how many revolutions does the propeller undergo during this time?
A) 24
B) 14
C) 7
D) 49
E) 150
F) 17
G) 21
H) 1200

$$
\theta=\frac{1}{2}\left(\omega+\omega_{0}\right) t=\frac{1}{2}(420 \mathrm{rev} / \mathrm{min})\left(\frac{1}{30} \mathrm{~min}\right)=7.0
$$

5. A hollow sphere of radius 0.25 m is rotating at $13 \mathrm{rad} / \mathrm{s}$ about an axis that passes through its center. The mass of the sphere is 3.8 kg . Assuming a constant net torque is applied to the sphere, how much work is required to bring the sphere to a stop? Note: moment of inertia of a hollow sphere, $I_{S}=\frac{2}{3} M R^{2}$.
A) 1.02 J
E) 16.3 J
B) 3.83 J
F) 19.9 J
C) 2.72 J
G) 13.4 J
D) 25.5 J
H) 8.54 J

$$
\begin{aligned}
W & =\Delta K=\frac{1}{2} I \omega^{2}=\frac{1}{3} M R^{2} \omega^{2} \\
& =\frac{1}{3}(3.8 \mathrm{~kg})(0.25 \mathrm{~m})^{2}(13.0 \mathrm{rad} / \mathrm{s})^{2}=13.4 \mathrm{~J}
\end{aligned}
$$

6. A string is wrapped around a pulley of radius 0.20 m and moment of inertia 0.40 kg . m^{2}. The string is pulled generating an angular acceleration of $14.0 \mathrm{rad} / \mathrm{s}^{2}$. With what magnitude of force was the string pulled?
A) 14.0 N
B) 17.0 N
C) 19.0 N
D) 35.0 N
E) 22.0 N
F) 28.0 N
G) 21.0 N
H) 33.0 N

$$
\begin{aligned}
\tau & =I \alpha \quad \tau=F R \\
F & =I \alpha / R=\left(0.40 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(14 \mathrm{rad} / \mathrm{s}) /(0.20 \mathrm{~m}) \\
& =28.0 \mathrm{~N}
\end{aligned}
$$

7. A solid disk with a mass of 0.50 kg is rotating on a frictionless surface with an angular speed of $15.0 \mathrm{rad} / \mathrm{s}$. Another disk just above the first with the same radius is dropped onto the lower disk. Kinetic
 friction between the disks brings both disks to a common angular speed of $3.00 \mathrm{rad} / \mathrm{s}$. What is the mass of the top disk?
A) 0.50 kg
B) 1.00 kg
C) 1.50 kg
D) 5.00 kg
E) 2.50 kg
F) 3.00 kg
G) 4.00 kg
H) 2.00 kg

$$
\begin{aligned}
L_{0} & =L, \quad I_{0} \omega_{0}=I \omega=\left(I_{0}+I_{\text {top }}\right) \omega \\
I_{\text {top }} & =I_{0}\left(\omega_{0}-\omega\right) / \omega=I_{0}(15-3) / 3=4 I_{0}
\end{aligned}
$$

8. A board in equilibrium has a mass of 23.0 kg , length 25.0 m is pivoted about one end. A rope tied a distance of 5.00 m from the other end makes an angle of 15° with the board. What is the magnitude of the force F ?
A) 545 N
B) 495 N
C) 445 N
D) 395 N
E) 962 N
F) 743 N
G) 689 N
H) 595 N

$$
\begin{aligned}
\Sigma \vec{\tau}_{i} & =0 \quad \vec{\tau}_{1}=-(L-P) F \sin \theta ; \quad \vec{\tau}_{2}=(L / 2) m g \\
F & =\frac{(L / 2) m g}{(L-P) \sin \theta}=\frac{(12.5 \mathrm{~m})(23.0 \mathrm{~kg})(9.81 \mathrm{~N} / \mathrm{kg})}{\left(20 \mathrm{~m} \cdot \sin 15^{\circ}\right)}=545 \mathrm{~N}
\end{aligned}
$$

9. The maximum compression stress that a bone can withstand is $1.60 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$ before it breaks. A thighbone (femur), which is the largest and longest bone in the human body, has a cross sectional area of $7.70 \times 10^{-4} \mathrm{~m}^{2}$. What is the maximum compression force that can be applied to the thighbone?
A) $2.10 \times 10^{11} \mathrm{~N}$
E) $5.40 \times 10^{7} \mathrm{~N}$
B) $1.20 \times 10^{6} \mathrm{~N}$
F) $1.23 \times 10^{5} \mathrm{~N}$
C) $4.80 \times 10^{12} \mathrm{~N}$
G) $8.70 \times 10^{5} \mathrm{~N}$
D) $3.00 \times 10^{3} \mathrm{~N}$
H) $4.23 \times 10^{9} \mathrm{~N}$

$$
\begin{aligned}
& \frac{F}{A}<1.6 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2} \\
& F<\left(1.6 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}\right)\left(7.70 \times 10^{-4} \mathrm{~m}^{2}\right)=1.23 \times 10^{5} \mathrm{~N}
\end{aligned}
$$

10. A force of 250 N is applied to a hydraulic jack piston that is 0.02 m in diameter. If the piston that supports the load has a diameter of 0.15 m , approximately how much mass can be lifted by the jack? Ignore any difference in height between the pistons.
A) 1400 kg
B) 700 kg
C) 250 kg
D) 2800 kg
E) 5600 kg
F) 3300 kg
G) 990 kg
H) 1700 kg

$$
\begin{aligned}
& P_{1}=P_{2}, \quad F_{1} / A_{1}=F_{2} / A_{2}, \quad F_{2}=\left(\frac{A_{2}}{A_{1}}\right) F_{1}=\left(\frac{d_{2}}{d_{1}}\right)^{2} F_{1} \\
& m=\frac{F_{2}}{g}=\left(\frac{d_{2}}{d_{1}}\right)^{2} \frac{F_{1}}{g}=\left(\frac{0.15}{0.02}\right)^{2} \frac{250 \mathrm{~N}}{9.81 \mathrm{~N} / \mathrm{kg}}=1400 \mathrm{~kg}
\end{aligned}
$$

11. A balloon inflated with a gas (density $=0.5 \mathrm{~kg} / \mathrm{m}^{3}$) has a volume of $6.00 \times 10^{-3} \mathrm{~m}^{3}$. If the buoyant force $\left(F_{\mathrm{B}}\right)$ exerted on the balloon is 0.0765 N , what is the density of the air?
A) $1.10 \mathrm{~kg} / \mathrm{m}^{3}$
E) $0.13 \mathrm{~kg} / \mathrm{m}^{3}$
B) $1.60 \mathrm{~kg} / \mathrm{m}^{3}$
F) $2.10 \mathrm{~kg} / \mathrm{m}^{3}$
C) $0.09 \mathrm{~kg} / \mathrm{m}^{3}$
G) $1.50 \mathrm{~kg} / \mathrm{m}^{3}$
D) $1.30 \mathrm{~kg} / \mathrm{m}^{3}$
H) $0.11 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& F_{\mathrm{B}}=\rho_{\mathrm{f}} V g \\
& \rho_{\mathrm{f}}=F_{\mathrm{B}} / V g=(0.0765 \mathrm{~N}) /\left(6 \times 10^{-3} \mathrm{~m}^{3} \cdot 9.81 \mathrm{~N} / \mathrm{kg}\right)=1.30 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

12. You want to fill a $0.0189-\mathrm{m}^{3}$ bucket with water to wash your car. Water exits a hose with a speed of $0.61 \mathrm{~m} / \mathrm{s}$. The radius of the faucet is 0.0078 m . How long does it take to fill the bucket completely?
A) 9.30 s
B) 17.0 s
C) 28.4 s
D) 49.3 s
E) 162 s
F) 199 s
G) 57.9 s
H) 21.3 s

$$
\begin{aligned}
V & =A v t=\pi r^{2} v t \\
t & =V / \pi r^{2} v=0.0189 \mathrm{~m}^{3} /\left[\pi(0.0078 \mathrm{~m})^{2}(0.61 \mathrm{~m} / \mathrm{s})\right]=162 \mathrm{~s}
\end{aligned}
$$

13. In level flight of an airplane weighing $1.92 \times 10^{4} \mathrm{~N}$, the air speed over the top of each wing is $62.0 \mathrm{~m} / \mathrm{s}$ and the air speed beneath each wing is $54.0 \mathrm{~m} / \mathrm{s}$. If the density of the air at this altitude is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$, what is the surface area of each wing of the airplane?
A) $16.0 \mathrm{~m}^{2}$
C) $21.7 \mathrm{~m}^{2}$
D) $5.37 \mathrm{~m}^{2}$
D) 5.37 m
E) $34.3 \mathrm{~m}^{2}$
F) $25.4 \mathrm{~m}^{2}$
G) $29.0 \mathrm{~m}^{2}$
H) $19.2 \mathrm{~m}^{2}$

$$
\begin{aligned}
P_{2}-P_{1} & =\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)=F / A_{\text {two-wings }} \\
\frac{1}{2} A_{\text {two-wings }} & =A_{\text {wing }}=\frac{F}{\rho\left(v_{1}^{2}-v_{2}^{2}\right)}=\frac{1.92 \times 10^{4} \mathrm{~N}}{1.29)\left(62^{2}-54^{2}\right) \mathrm{N}}=16 \mathrm{~m}^{2}
\end{aligned}
$$

14. Steel has a Young's modulus 2.00
$\times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and a coefficient of thermal expansion that is $12.0 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$. A steel beam at $10^{\circ} \mathrm{C}$ is constrained to a length of 2.50 m . A pressure of $7.20 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$ is generated at each end of the beam at what temperature?
A) $50.0{ }^{\circ} \mathrm{C}$
B) $20.0{ }^{\circ} \mathrm{C}$
C) $40.0{ }^{\circ} \mathrm{C}$
D) $30.0^{\circ} \mathrm{C}$
E) $35.0^{\circ} \mathrm{C}$
F) $25.0^{\circ} \mathrm{C}$
G) $45.0^{\circ} \mathrm{C}$
H) $15.0^{\circ} \mathrm{C}$

$$
\begin{aligned}
P & =\frac{F}{A}=Y \frac{\Delta L}{L}=Y \frac{\alpha L \Delta T}{L} \\
\Delta T & =\frac{P}{Y \alpha}=\frac{7.20 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}}{\left(2.00 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)\left(12.0 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right)}=30^{\circ} \mathrm{C}, \quad T=40^{\circ} \mathrm{C}
\end{aligned}
$$

15. How many molecules are in
0.088 kg of carbon dioxide, CO_{2} ? (atomic masses: $\mathrm{C}=12 \mathrm{u} ; \mathrm{O}=16 \mathrm{u}$. (Avogadro's number is $6.02 \times 10^{23} / \mathrm{mol}$)
A) 1.20×10^{24}
B) 3.01×10^{24}
C) 2.79×10^{24}
D) 1.83×10^{23}
E) 6.02×10^{24}
F) 4.81×10^{24}
G) 5.41×10^{23}
H) 6.02×10^{26}

$$
\begin{aligned}
N & =N_{\mathrm{A}} n=N_{\mathrm{A}} m(\text { in } \mathrm{g}) / m(\mathrm{in} \mathrm{u}) \quad \mathrm{u}=\text { atomic mass unit } \\
& =\left(6.02 \times 10^{23}\right)(88) /(44 \mathrm{u}) \\
& =1.20 \times 10^{24}
\end{aligned}
$$

16. Helium atoms at 450 K have an RMS speed of $1675 \mathrm{~m} / \mathrm{s}$. What is the speed of the helium atoms if the temperature is raised to 900 K ?
A) $1920 \mathrm{~m} / \mathrm{s}$
B) $3350 \mathrm{~m} / \mathrm{s}$
C) $3770 \mathrm{~m} / \mathrm{s}$
D) $3550 \mathrm{~m} / \mathrm{s}$
E) $2970 \mathrm{~m} / \mathrm{s}$
F) $2370 \mathrm{~m} / \mathrm{s}$
G) $4280 \mathrm{~m} / \mathrm{s}$
H) $3940 \mathrm{~m} / \mathrm{s}$

$\frac{1}{2} m \overline{v_{1}^{2}}=\frac{3}{2} k_{\mathrm{B}} T_{1}$
$\frac{1}{2} m \overline{v_{2}^{2}}=\frac{3}{2} k_{\mathrm{B}} T_{2}$
$v_{\text {RMS2 }}=v_{\text {RMS1 }} \sqrt{T_{2} / T_{1}}=1675 \mathrm{~m} / \mathrm{s} \sqrt{\overline{v^{2}}}$
$900 / 450$

