Chapter 10

Solids & Liquids

continued

10.3 Pascal's Principle

PASCAL'S PRINCIPLE

Any change in the pressure applied to a completely enclosed fluid is transmitted <u>undiminished</u> to all parts of the fluid and enclosing walls.

$$P_2 = \frac{F_2}{A_2}; \quad P_1 = \frac{F_1}{A_1}$$

Assume weight of fluid in the tube is negligible

$$P_2 = P_1 + \rho gh$$

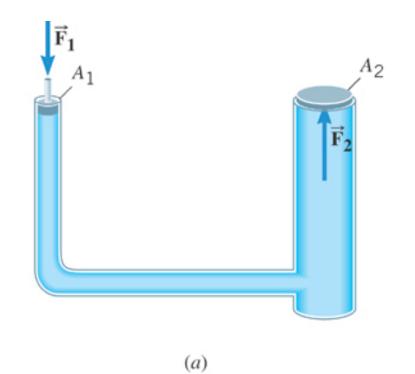
$$\rho gh \ll P$$

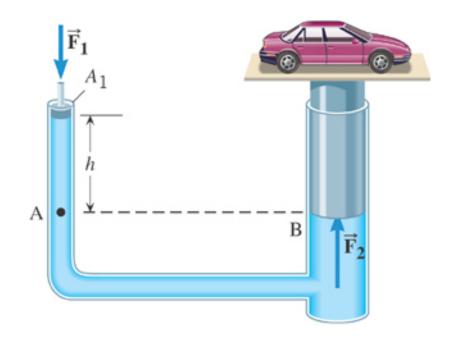
$$P_2 = P_1$$

Small ratio

$$\frac{F_2}{A_2} = \frac{F_1}{A_1} \Longrightarrow$$

$$F_1 = F_2 \left(\frac{A_1}{A_2} \right)$$





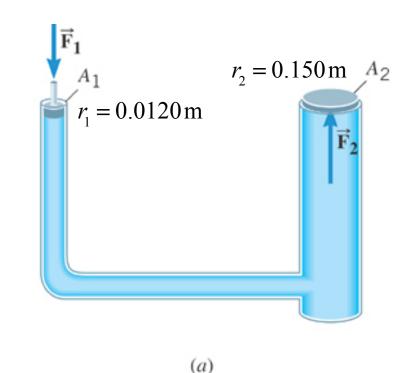
10.3 Pascal's Principle

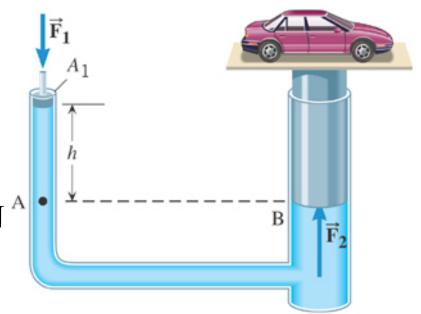
Example: A Car Lift

The input piston has a radius of 0.0120 m and the output plunger has a radius of 0.150 m.

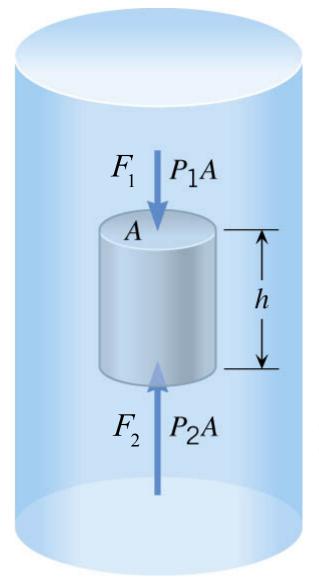
The combined weight of the car and the plunger is 20500 N. Suppose that the input piston has a negligible weight and the bottom surfaces of the piston and plunger are at the same level. What is the required input force?

$$F_1 = F_2 \left(\frac{A_1}{A_2}\right)$$
= $(20500 \text{ N}) \frac{\pi (0.0120 \text{ m})^2}{\pi (0.150 \text{ m})^2} = 131 \text{ N}^A$





10.4 Archimedes' Principle



Buoyant Force

$$F_{B} = F_{2} + (-F_{1})$$

$$= P_{2}A - P_{1}A = (P_{2} - P_{1})A$$

$$= \rho ghA \qquad \text{since } P_{2} = P_{1} + \rho gh$$

$$= \rho V g \qquad \text{and } V = hA$$

$$= \rho V g \qquad \text{and } V = hA$$

Buoyant force = Weight of displaced fluid

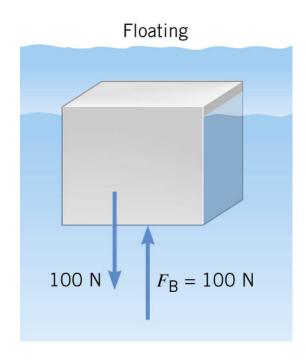
ARCHIMEDES' PRINCIPLE

Any fluid applies a buoyant force to an object that is partially or completely immersed in it; the magnitude of the buoyant force equals the weight of the fluid that the object displaces:

$$F_B = W_{\text{fluid}}$$
Magnitude of Weight of buoyant force displaced fluid

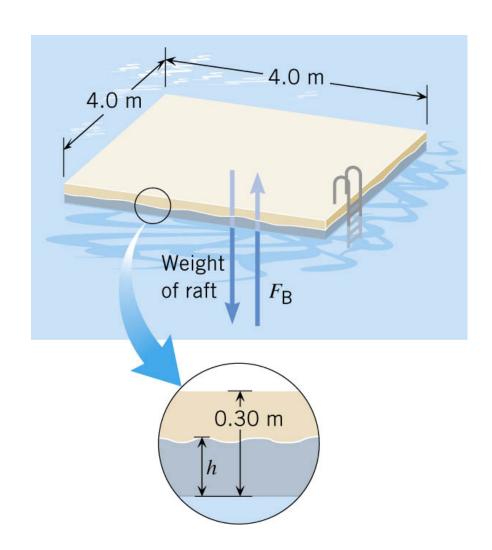
CORROLARY

If an object is floating then the magnitude of the buoyant force is equal to the magnitude of its weight.



Example: A Swimming Raft

The raft is made of solid square pinewood. Determine whether the raft floats in water and if so, how much of the raft is beneath the surface.



10.4 Archimedes' Principle

Weight of the Raft

$$W_{raft} = m_{raft}g = \rho_{pine}V_{raft}g$$
= $(550 \text{kg/m}^3)(4.8 \text{m}^3)(9.80 \text{ m/s}^2)$
= 26000 N

If
$$W_{\text{raft}} < F_{\text{B}}^{\text{max}}$$
, raft floats

$$F_{\rm B}^{\rm max} = W_{\rm fluid}$$
 (full volume)

$$F_B^{\text{max}} = \rho V g = \rho_{water} V_{water} g$$

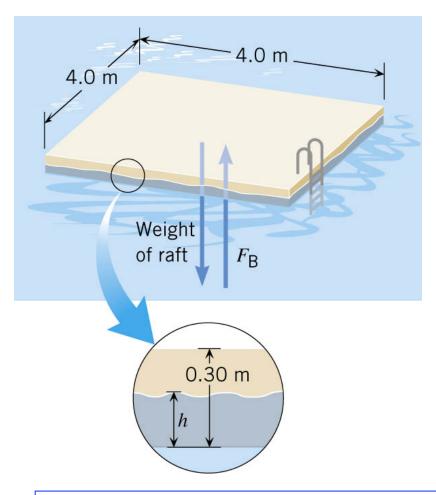
= $(1000 \text{ kg/m}^3)(4.8 \text{m}^3)(9.80 \text{ m/s}^2)$
= 47000 N

$$W_{raft} < F_B^{\text{max}}$$
 Raft floats

Raft properties

$$V_{raft} = (4.0)(4.0)(0.30) \text{m}^3 = 4.8 \text{ m}^3$$

 $\rho_{pine} = 550 \text{ kg/m}^3$



Part of the raft is above water

10.4 Archimedes' Principle

How much of raft below water?

Floating object

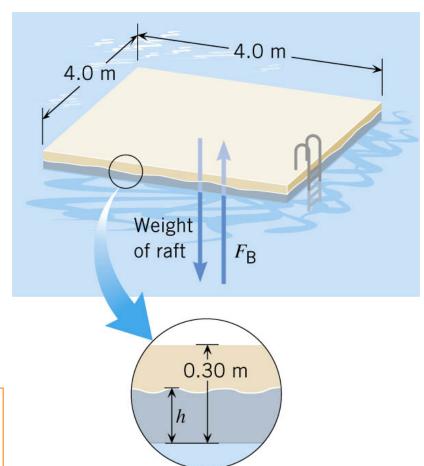
$$F_{\rm B} = W_{\rm raft}$$

$$F_{B} = \rho_{\text{water}} g V_{\text{water}}$$
$$= \rho_{\text{water}} g (A_{\text{water}} h)$$

$$h = \frac{W_{\text{raft}}}{\rho_{\text{water}} g A_{\text{water}}} \qquad W_{\text{raft}} = 26000 \text{ N}$$

$$= \frac{26000 \text{N}}{(1000 \text{kg/m}^3)(9.80 \text{m/s}^2)(16.0 \text{ m}^2)}$$

$$= 0.17 \text{ m}$$



Clicker Question 10.5

A block of iron (density $7.8 \times 10^3 \text{ kg/m}^3$) is placed in a pool of mercury ($13.6 \times 10^3 \text{ kg/m}^3$). What fraction of the iron block will be visible above the surface of the mercury?

- a) 0.57
- b) 0.43
- c) 0.31
- d) 0.28
- e) 0.15

Clicker Question 10.5

A block of iron (density $7.8 \times 10^3 \text{ kg/m}^3$) is placed in a pool of mercury ($13.6 \times 10^3 \text{ kg/m}^3$). What fraction of the iron block will be visible above the surface of the mercury?

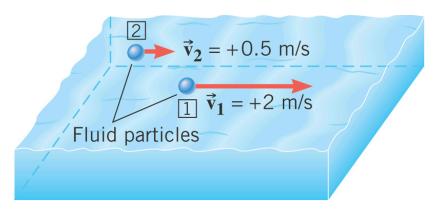
- a) 0.57
- b) 0.43
- c) 0.31
- d) 0.28
- e) 0.15

$$\begin{split} W_{B} &= W_{Fe} \\ \rho_{hg} g A h_{under} &= \rho_{Fe} g A h_{total} \\ f_{under} &= \frac{h_{under}}{h_{total}} = \frac{\rho_{Fe} g A}{\rho_{Hg} g A} = \frac{\rho_{Fe}}{\rho_{hg}} = \frac{7.8}{13.6} = 0.57 \ (57\%) \\ f_{above} &= 1 - f_{under} = 0.43 \ (43\%) \end{split}$$

10.5 Fluids in Motion

In *steady flow* the velocity of the fluid particles at any point is constant as time passes.

Unsteady flow exists whenever the velocity of the fluid particles at a point changes as time passes.



Turbulent flow is an extreme kind of unsteady flow in which the velocity of the fluid particles at a point change erratically in both magnitude and direction.

Fluid flow can be *compressible* or *incompressible*. Most liquids are nearly incompressible.

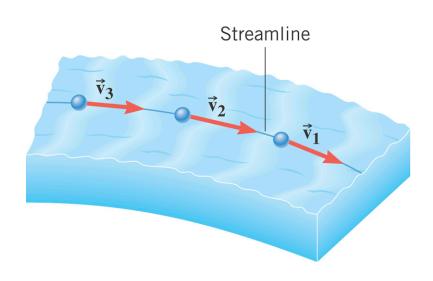
Fluid flow can be *viscous* or *nonviscous*.

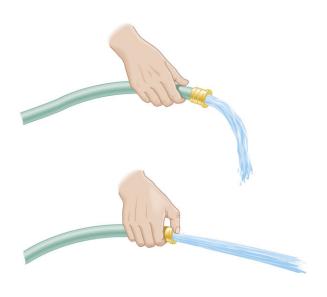
An incompressible, nonviscous fluid is called an *ideal fluid*.

10.5 Fluids in Motion

When the flow is steady, *streamlines* are often used to represent the trajectories of the fluid particles.

The mass of fluid per second that flows through a tube is called the *mass flow rate*.





10.5 The Equation of Continuity

EQUATION OF CONTINUITY

The mass flow rate has the same value at every position along a tube that has a single entry and a single exit for fluid flow.

$$\rho_1 A_1 v_1 = \rho_2 A_2 v_2$$

SI Unit of Mass Flow Rate: kg/s

Incompressible fluid:

$$\rho_1 = \rho_2 \qquad A_1 v_1 = A_1 v_1 = A_2 v_1 = A_2 v_2 = A_2 v_2 = A_2 v_1 = A_2 v_2 v_2 = A_2 v_2$$

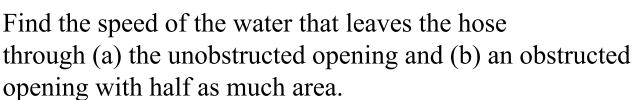
Volume flow rate Q:

$$Q = Av$$

10.5 The Equation of Continuity

Example: A Garden Hose

A garden hose has an unobstructed opening with a cross sectional area of $2.85 \times 10^{-4} \text{m}^2$. It fills a bucket with a volume of $8.00 \times 10^{-3} \text{m}^3$ in 30 seconds.

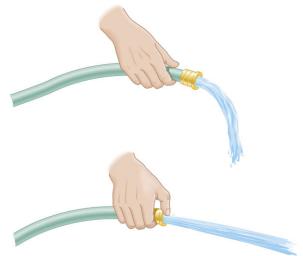


a)
$$Q = Av$$

$$v = \frac{Q}{A} = \frac{\left(8.00 \times 10^{-3} \text{m}^3\right) / \left(30.0 \text{ s}\right)}{2.85 \times 10^{-4} \text{m}^2} = 0.936 \text{m/s}$$

b)
$$A_1 v_1 = A_2 v_2$$

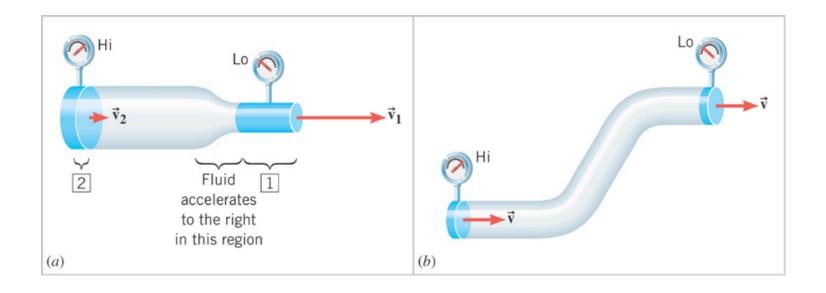
 $v_2 = \frac{A_1}{A_2} v_1 = (2)(0.936 \,\mathrm{m/s}) = 1.87 \,\mathrm{m/s}$



10.5 Bernoulli's Equation

The fluid accelerates toward the lower pressure regions.

According to the pressure-depth relationship, the pressure is lower at higher levels, provided the area of the pipe does not change.



Apply Work-Energy theorem to determine relationship between pressure, height, velocity, of the fluid.

10.5 Bernoulli's Equation

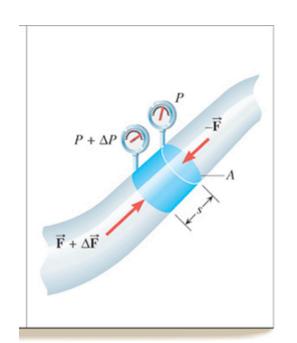
 $E_2 = \frac{1}{2}mv_2^2 + mgy_2$

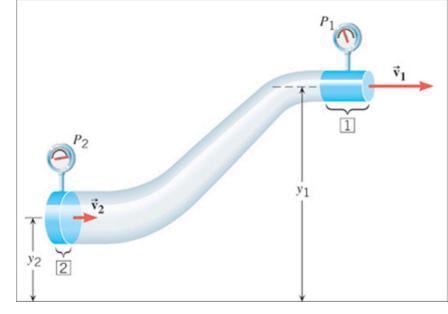
Work done by tiny pressure "piston"

$$W_{\Delta P} = (\sum F)s = (\Delta F)s = (\Delta PA)s; \quad V = As$$

Work (NC) done by pressure difference from 2 to 1

$$W_{\rm NC} = \left(P_2 - P_1\right)V$$





$$E_1 = \frac{1}{2}mv_1^2 + mgy_1$$

$$W_{NC} = E_1 - E_2 = \left(\frac{1}{2}mv_1^2 + mgy_1\right) - \left(\frac{1}{2}mv_2^2 + mgy_2\right)$$

10.5 Bernoulli's Equation

$$\begin{split} W_{\rm NC} &= \left(P_2 - P_1\right)V \\ W_{\rm NC} &= E_1 - E_2 = \left(\frac{1}{2}mv_1^2 + mgy_1\right) - \left(\frac{1}{2}mv_2^2 + mgy_2\right) & \text{NC Work yields a total Energy change.} \end{split}$$

Equating the two expressions for the work done,

$$(P_2 - P_1)V = (\frac{1}{2}mv_1^2 + mgy_1) - (\frac{1}{2}mv_2^2 + mgy_2)$$
 $m = \rho V$

$$(P_2 - P_1) = (\frac{1}{2}\rho v_1^2 + \rho g y_1) - (\frac{1}{2}\rho v_2^2 + \rho g y_2)$$

Rearrange to obtain Bernoulli's Equation

BERNOULLI'S EQUATION

In steady flow of a nonviscous, incompressible fluid, the pressure, the fluid speed, and the elevation at two points are related by:

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$$

10.5 Applications of Bernoulli's Equation

Conceptual Example: Tarpaulins and Bernoulli's Equation

When the truck is stationary, the tarpaulin lies flat, but it bulges outward when the truck is speeding down the highway.

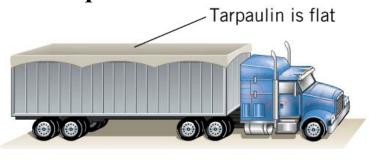
Account for this behavior.

Bernoulli's Equation

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$$

$$P_1 = P_2 + \frac{1}{2}\rho v_2^2$$

$$P_{1} > P_{2}$$



Stationary

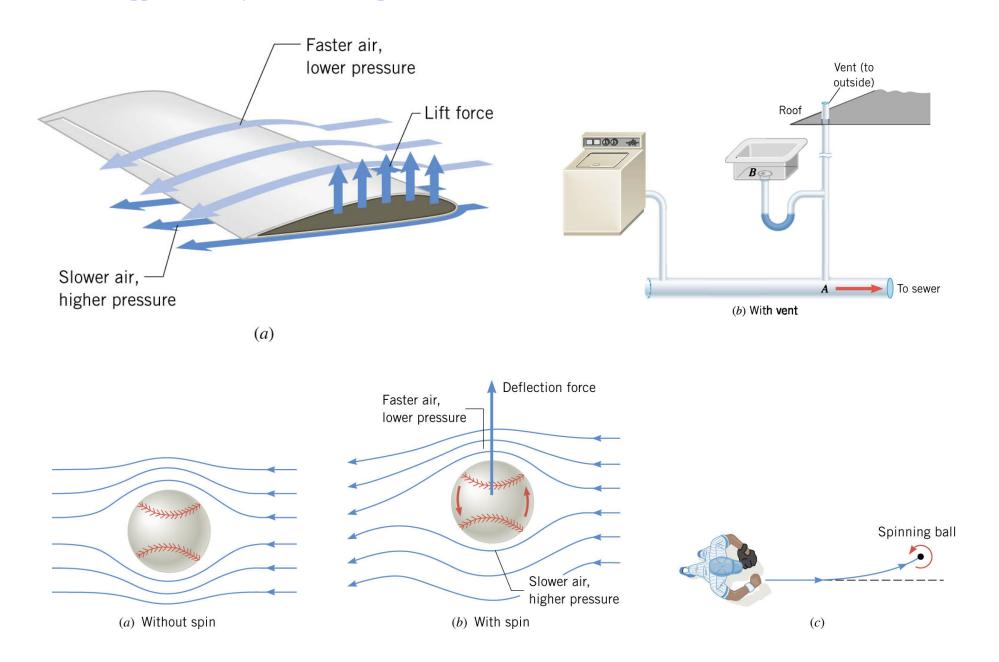
Relative to moving truck

 $v_1 = 0$ under the tarp

 v_2 air flow over top

Moving

10.5 Applications of Bernoulli's Equation



10.5 Applications of Bernoulli's Equation

Example: Efflux Speed

The tank is open to the atmosphere at the top. Find and expression for the speed of the liquid leaving the pipe at the bottom.

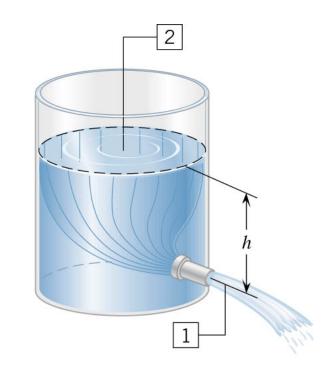
$$P_1 = P_2 = P_{atmosphere} (1 \times 10^5 \text{ N/m}^2)$$

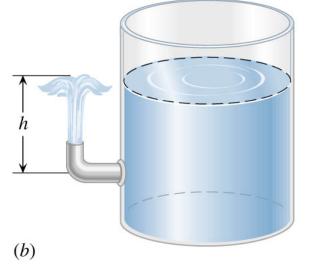
 $v_2 = 0, \quad y_2 = h, \quad y_1 = 0$

$$P_{1} + \frac{1}{2}\rho v_{1}^{2} + \rho g y_{1} = P_{2} + \frac{1}{2}\rho v_{2}^{2} + \rho g y_{2}$$

$$\frac{1}{2}\rho v_{1}^{2} = \rho g h$$

$$v_1 = \sqrt{2gh}$$

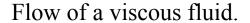


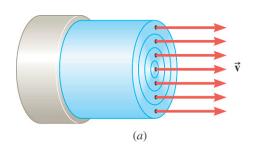


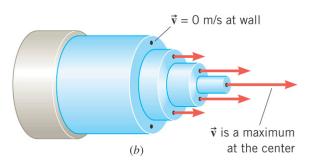
(a)

10.6 Viscous Flow

Flow of an ideal fluid.







FORCE NEEDED TO MOVE A LAYER OF VISCOUS FLUID WITH CONSTANT VELOCITY

The magnitude of the tangential force required to move a fluid layer at a constant speed is given by:

$$F = \frac{\eta A v}{y}$$

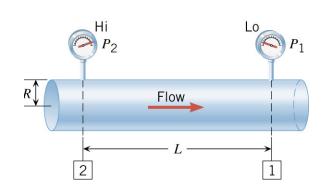
 η , is the coefficient of viscosity SI Unit: Pa·s; 1 poise (P) = 0.1 Pa·s

POISEUILLE'S LAW (flow of viscous fluid)

The volume flow rate is given by:

$$Q = \frac{\pi R^4 \left(P_2 - P_1 \right)}{8\eta L}$$

Pressure drop in a straight uniform diamater pipe.



11.11 Viscous Flow

Example: Giving and Injection

A syringe is filled with a solution whose viscosity is 1.5×10^{-3} Pa·s. The internal radius of the needle is 4.0×10^{-4} m.

The gauge pressure in the vein is 1900 Pa. What force must be applied to the plunger, so that $1.0 \times 10^{-6} \text{m}^3$ of fluid can be injected in 3.0 s?

at 1.0x10⁻⁶m³ of fluid can be injected
0 s?

$$P_2 - P_1 = \frac{8\eta LQ}{\pi R^4}$$

$$= \frac{8(1.5 \times 10^{-3} \text{Pa} \cdot \text{s})(0.025 \text{ m})(1.0 \times 10^{-6} \text{ m}^3/3.0 \text{ s})}{\pi (4.0 \times 10^{-4} \text{m})^4} = 1200 \text{ Pa}$$

 $P_2 = (1200 + P_1)$ Pa = (1200 + 1900)Pa = 3100 Pa

Area = $8.0 \times 10^{-5} \text{ m}^2$

0.025 m

$$F = P_2 A = (3100 \text{ Pa})(8.0 \times 10^{-5} \text{ m}^2) = 0.25 \text{N}$$