Chapter 10

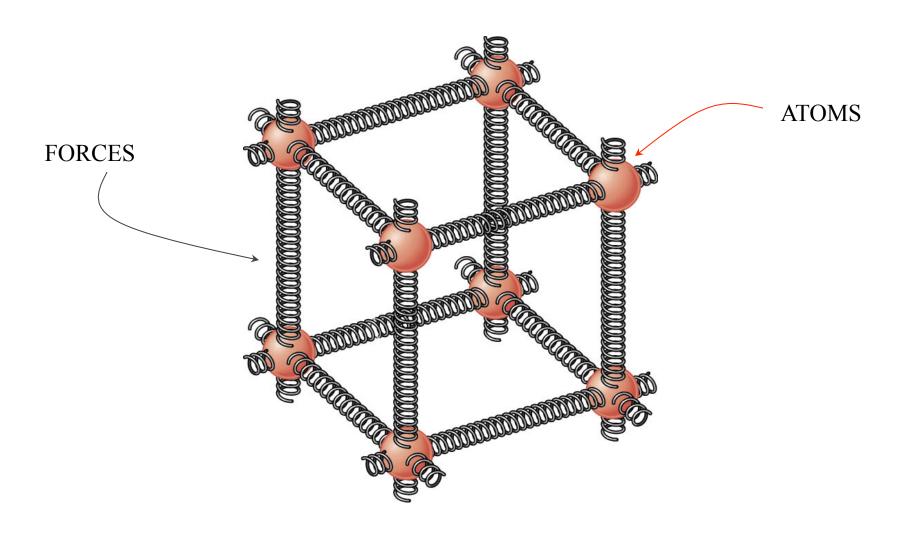
Solids & Liquids

DEFINITION OF MASS DENSITY

The mass density of a substance is the mass of a substance divided by its volume:

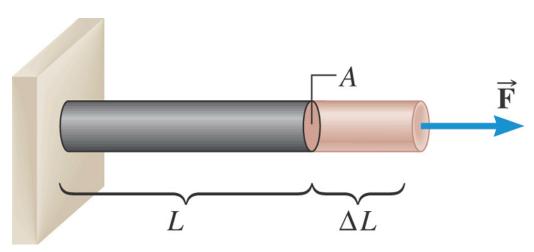
$$\rho = \frac{m}{V}$$

SI Unit of Mass Density: kg/m³


Mass Densities^a of Common Substances

	Mass Density ρ
Substai	(kg/m^3)
Solids	
Aluminum	2700
Brass	8470
Concrete	2200
Copper	8890
Diamond	3520
Gold	19 300
Ice	917
Iron (steel)	7860
Lead	11 300
Quartz	2660
Silver	10 500
Wood (yellow pine)	550
Liquids	
Blood (whole, 37 °C	C) 1060
Ethyl alcohol	806
Mercury	13 600
Oil (hydraulic)	800
Water (4 °C)	1.000×10^{3}
Gases	
Air	1.29
Carbon dioxide	1.98
Helium	0.179
Hydrogen	0.0899
Nitrogen	1.25
Oxygen	1.43

^a Unless otherwise noted, densities are given at 0 °C and 1 atm pressure.


10.2 Solids and Elastic Deformation

Because of these atomic-level "springs", a material tends to return to its initial shape once forces have been removed.

10.2 Solids and Elastic Deformation

STRETCHING, COMPRESSION, AND YOUNG'S MODULUS

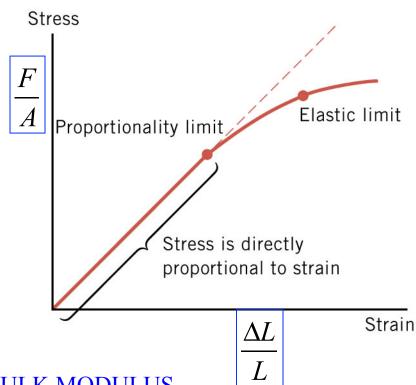
$$F = Y \left(\frac{\Delta L}{L}\right) A$$
Young's modulus has the units of pressure: N/m²

Young's modulus is a characteristic of the material (see table 10.2)

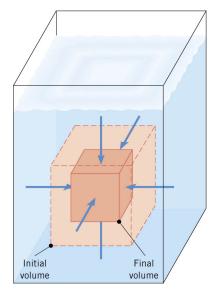
Values for the Young's Modulus of Solid Materials

Material	Young's Modulus Y (N/m²)
Aluminum	6.9×10^{10}
Bone	
Compression	9.4×10^{9}
Tension	1.6×10^{10}
Brass	9.0×10^{10}
Brick	1.4×10^{10}
Copper	1.1×10^{11}
Mohair	2.9×10^{9}
Nylon	3.7×10^{9}
Pyrex glass	6.2×10^{10}
Steel	2.0×10^{11}
Teflon	3.7×10^{8}
Titanium	1.2×10^{11}
Tungsten	3.6×10^{11}

Note: 1 Pascal (Pa) = 1 N/m^2 1 GPa = $1 \times 10^9 \text{ N/m}^2$


10.2 Solids and Elastic Deformation

HOOKE'S LAW FOR STRESS AND STRAIN


$$\frac{F}{A} = Y \frac{\Delta L}{L}$$
stress = $Y \times \text{strain}$

Slope is Young's modulus *Y*.

Strain is a unitless quantity, and *SI Unit of Stress:* N/m²

VOLUME DEFORMATION AND THE BULK MODULUS

Pressure Change

$$\Delta P = -B \left(\frac{\Delta V}{V} \right)$$

B: Bulk modulus Table 10.2

10.2 Elastic Deformation

Example: Bone Compression

In a circus act, a performer supports the combined weight (1080 N) of a number of colleagues. Each thighbone of this performer has a length of 0.55 m and an effective cross sectional area of 7.7×10^{-4} m². Determine the amount that each thighbone compresses under the extra weight.

$$F = Y \left(\frac{\Delta L}{L}\right) A$$
each leg = $\frac{1080 \text{ N}}{2}$

$$\Delta L = \frac{FL}{YA}$$

$$= \frac{(540 \text{ N})(0.55 \text{ m})}{(9.4 \times 10^9 \text{ N/m}^2)(7.7 \times 10^{-4} \text{ m}^2)}$$

$$= 4.1 \times 10^{-5} \text{m} = 0.041 \text{mm}$$

Clicker Question 10.1

A cylindrical, 0.500-m rod has a diameter of 0.02 m. The rod is stretched to a length of 0.501 m by a force of 3000 N. What is the Young's modulus of the material? $F = Y\left(\frac{\Delta L}{L}\right)A$

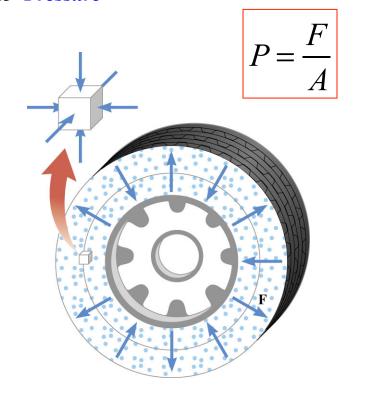
a)
$$1.5 \times 10^8 \text{ N/m}^2$$

b)
$$1.2 \times 10^9 \text{ N/m}^2$$

c)
$$7.5 \times 10^7 \text{ N/m}^2$$

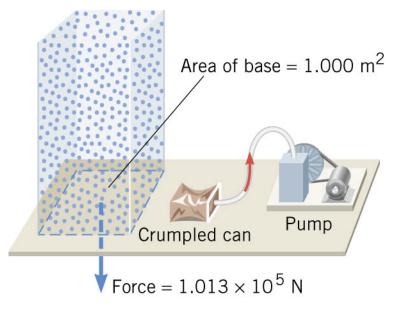
d)
$$4.8 \times 10^9 \text{ N/m}^2$$

e)
$$1.5 \times 10^7 \text{ N/m}^2$$


Clicker Question 10.2

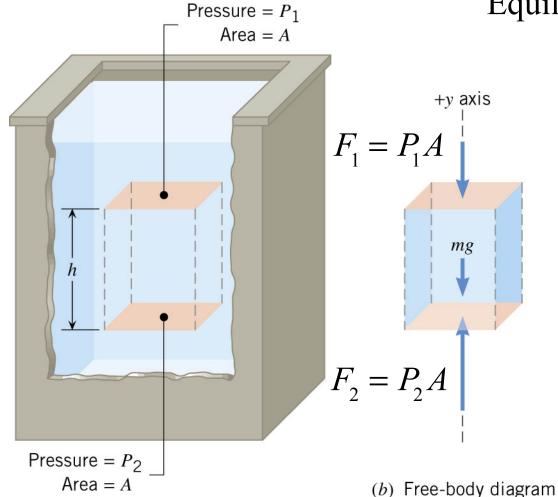
A cube made of brass (bulk modulus $B = 6.70 \times 10^{10} \text{ N/m}^2$) is taken by submarine from the surface where the pressure is $1.01 \times 10^5 \text{ N/m}^2$ to the deepest part of the ocean at a depth of 1.10×10^4 m where it is exposed to a pressure is $1.25 \times 10^8 \text{ N/m}^2$. What is the percent change in volume as a result of this movement?

$$\Delta P = -B \left(\frac{\Delta V}{V} \right)$$


- a) 0.413%
- b) 0.297%
- c) 0.187%
- d) 0.114%
- e) Need to know the initial size of the cube

10.3 Pressure

Pressure = Force per unit Area


The same pressure acts inward in every direction on a small volume.

Atmospheric Pressure at Sea Level: $1.013 \times 10^5 \text{ Pa} = 1 \text{ atmosphere}$

10.3 Pressure and Depth in a Static Fluid

Fluid density is ρ Equilibrium of a volume of fluid

(a)

of the column

$$F_2 = F_1 + mg$$
with $F = PA$, $m = \rho V$

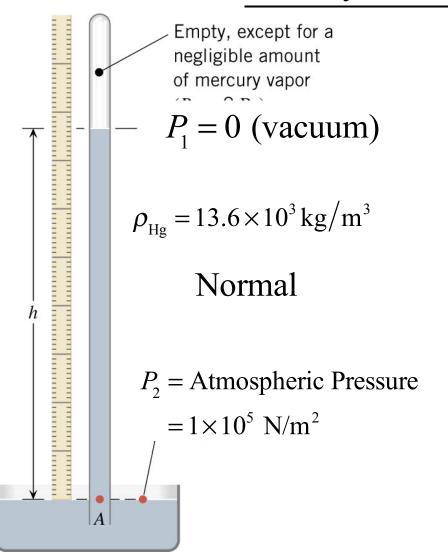
$$P_2 A = P_1 A + \rho V g$$
with $V = Ah$

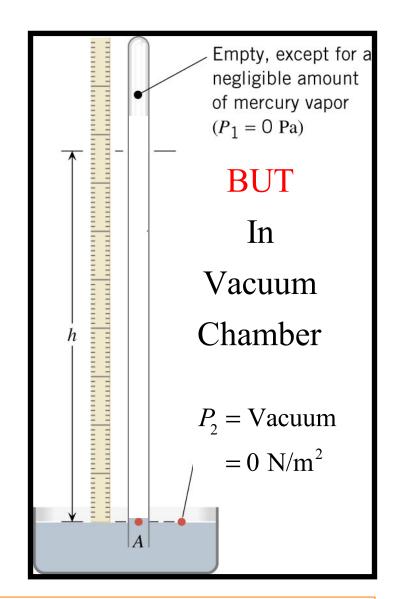
$$P_2 \times = P_1 \times + \rho \times hg$$

$$P_2 = P_1 + \rho \, gh$$

Pressure grows linearly with depth (h)

Clicker Question 10.3


The density of mercury is 13.6 x 10³ kg/m³. The pressure 100 cm below the surface of a pool of mercury is how much higher than at the surface?


$$P_2 = P_1 + \rho gh$$

- a) 13 N/m^2
- b) 130 N/m^2
- c) $1.3 \times 10^3 \text{ N/m}^2$
- d) $1.3 \times 10^4 \text{ N/m}^2$
- e) $1.3 \times 10^5 \text{ N/m}^2$

10.3 Pressure Gauges

Mercury Barometer

$$P_{atm} = \rho gh \Rightarrow h = \frac{P_{atm}}{\rho g} = \frac{\left(1.01 \times 10^5 \text{ Pa}\right)}{\left(13.6 \times 10^3 \text{ kg/m}^3\right) \left(9.81 \text{ m/s}^2\right)} = 0.760 \text{ m} (760 \text{ mm of Hg})$$

Clicker Question 10.4

What is the force that causes a liquid to move upward in a drinking straw a a person takes a drink?

- a) the force due to a low pressure generated by sucking
- b) the force due to the pressure within the liquid
- c) the force due to the atmospheric pressure
- d) the force due to the low pressure in the lungs
- e) the force due to friction on the surface of the straw

10.3 Pascal's Principle

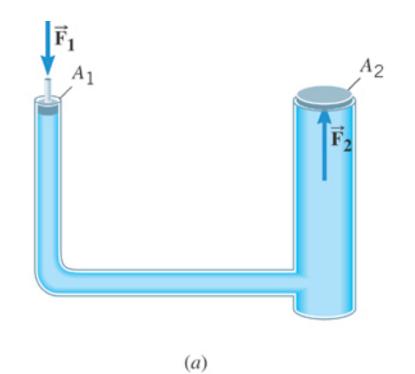
PASCAL'S PRINCIPLE

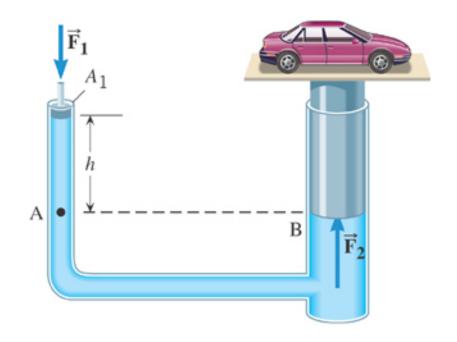
Any change in the pressure applied to a completely enclosed fluid is transmitted <u>undiminished</u> to all parts of the fluid and enclosing walls.

$$P_2 = \frac{F_2}{A_2}; \quad P_1 = \frac{F_1}{A_1}$$

Assume weight of fluid in the tube is negligible

$$P_2 = P_1 + \rho gh$$

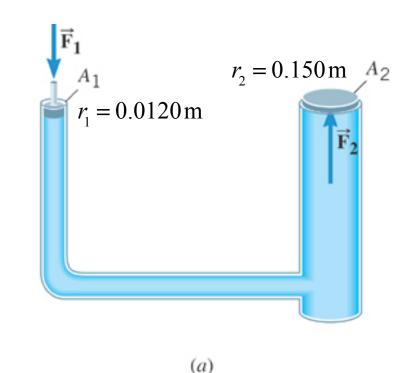

$$\rho gh \ll P$$

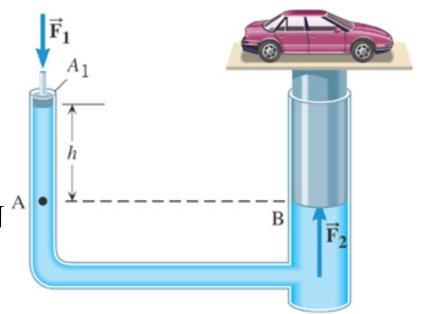

$$P_2 = P_1$$

Small ratio

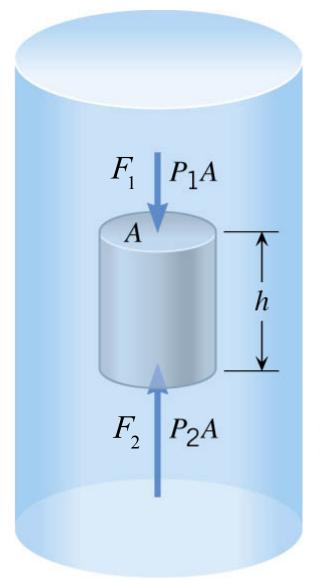
$$\frac{F_2}{A_2} = \frac{F_1}{A_1} \Longrightarrow$$

$$F_1 = F_2 \left(\frac{A_1}{A_2} \right)$$


10.3 Pascal's Principle


Example: A Car Lift

The input piston has a radius of 0.0120 m and the output plunger has a radius of 0.150 m.


The combined weight of the car and the plunger is 20500 N. Suppose that the input piston has a negligible weight and the bottom surfaces of the piston and plunger are at the same level. What is the required input force?

$$F_1 = F_2 \left(\frac{A_1}{A_2}\right)$$
= $(20500 \text{ N}) \frac{\pi (0.0120 \text{ m})^2}{\pi (0.150 \text{ m})^2} = 131 \text{ N}^A$

10.4 Archimedes' Principle

Buoyant Force

$$F_{B} = F_{2} + (-F_{1})$$

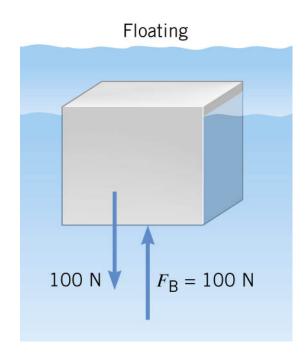
$$= P_{2}A - P_{1}A = (P_{2} - P_{1})A$$

$$= \rho ghA \qquad \text{since } P_{2} = P_{1} + \rho gh$$

$$= \rho V g \qquad \text{and } V = hA$$

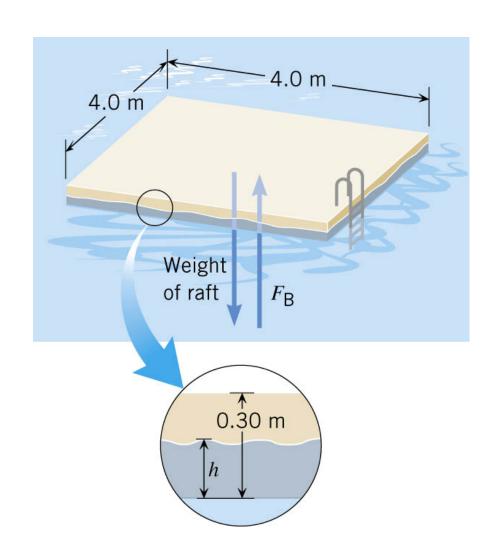
$$= \rho V g \qquad \text{and } V = hA$$

Buoyant force = Weight of displaced fluid


ARCHIMEDES' PRINCIPLE

Any fluid applies a buoyant force to an object that is partially or completely immersed in it; the magnitude of the buoyant force equals the weight of the fluid that the object displaces:

$$F_B = W_{\text{fluid}}$$
Magnitude of Weight of buoyant force displaced fluid


CORROLARY

If an object is floating then the magnitude of the buoyant force is equal to the magnitude of its weight.

Example: A Swimming Raft

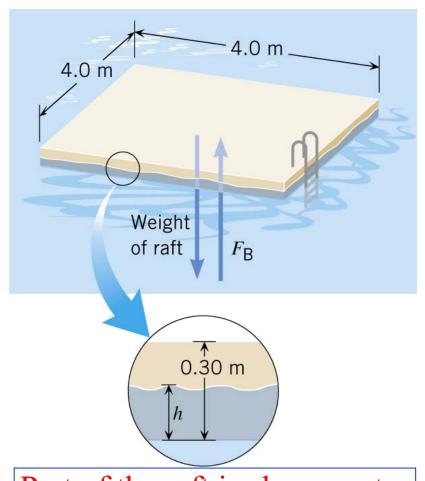
The raft is made of solid square pinewood. Determine whether the raft floats in water and if so, how much of the raft is beneath the surface.

10.4 Archimedes' Principle

$$W_{raft} = m_{raft}g = \rho_{pine}V_{raft}g$$

= $(550 \text{kg/m}^3)(4.8 \text{m}^3)(9.80 \text{m/s}^2)$
= 26000 N

If $W_{\text{raft}} < F_{\text{B}}^{\text{max}}$, raft floats


$$F_{\rm B}^{\rm max} = W_{\rm fluid}$$
 (full volume)

$$F_B^{\text{max}} = \rho V g = \rho_{water} V_{water} g$$

= $(1000 \text{kg/m}^3)(4.8 \text{m}^3)(9.80 \text{m/s}^2)$
= 47000 N

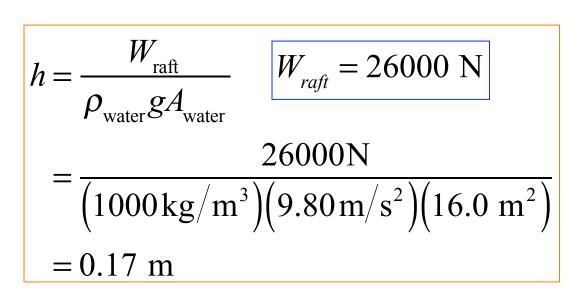
$$W_{raft} < F_B^{\text{max}}$$
 Raft floats

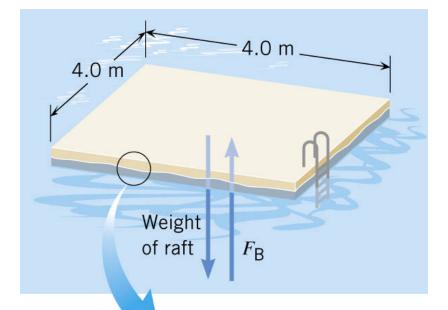
Raft properties

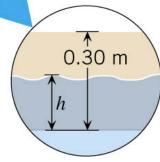
$$V_{raft} = (4.0)(4.0)(0.30) \text{m}^3 = 4.8 \text{ m}^3$$

 $\rho_{pine} = 550 \text{ kg/m}^3$

Part of the raft is above water

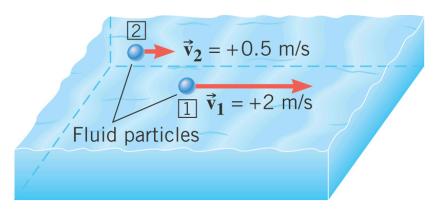

10.4 Archimedes' Principle


How much of raft below water?


Floating object

$$F_{\rm B} = W_{\rm raft}$$

$$F_{B} = \rho_{\text{water}} g V_{\text{water}}$$
$$= \rho_{\text{water}} g (A_{\text{water}} h)$$



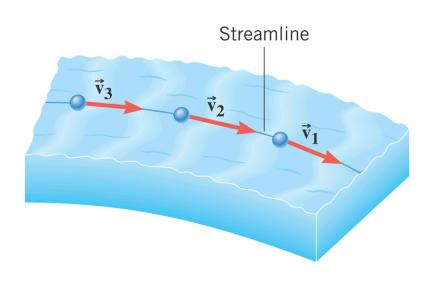
10.5 Fluids in Motion

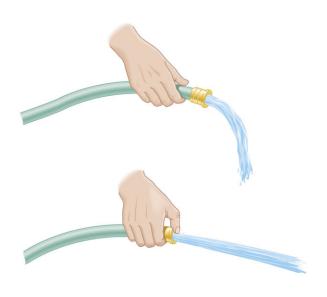
In *steady flow* the velocity of the fluid particles at any point is constant as time passes.

Unsteady flow exists whenever the velocity of the fluid particles at a point changes as time passes.

Turbulent flow is an extreme kind of unsteady flow in which the velocity of the fluid particles at a point change erratically in both magnitude and direction.

Fluid flow can be *compressible* or *incompressible*. Most liquids are nearly incompressible.


Fluid flow can be *viscous* or *nonviscous*.


An incompressible, nonviscous fluid is called an *ideal fluid*.

10.5 Fluids in Motion

When the flow is steady, *streamlines* are often used to represent the trajectories of the fluid particles.

The mass of fluid per second that flows through a tube is called the *mass flow rate*.

10.5 The Equation of Continuity

EQUATION OF CONTINUITY

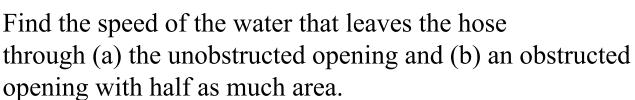
The mass flow rate has the same value at every position along a tube that has a single entry and a single exit for fluid flow.

$$\rho_1 A_1 v_1 = \rho_2 A_2 v_2$$

SI Unit of Mass Flow Rate: kg/s

Incompressible fluid:

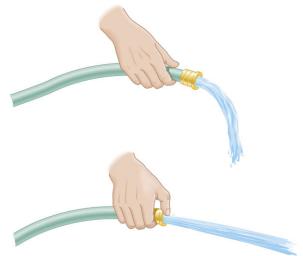
$$\rho_1 = \rho_2 \qquad A_1 v_1 = A_1 v_1 = A_2 v_1 = A_2 v_2 = A_2 v_2 = A_2 v_1 = A_2 v_2 v_2 = A_2 v_2$$


Volume flow rate Q:

$$Q = Av$$

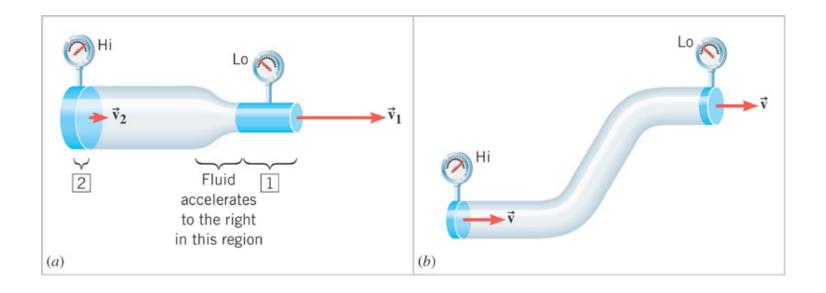
10.5 The Equation of Continuity

Example: A Garden Hose


A garden hose has an unobstructed opening with a cross sectional area of $2.85 \times 10^{-4} \text{m}^2$. It fills a bucket with a volume of $8.00 \times 10^{-3} \text{m}^3$ in 30 seconds.

a)
$$Q = Av$$

$$v = \frac{Q}{A} = \frac{\left(8.00 \times 10^{-3} \text{m}^3\right) / \left(30.0 \text{ s}\right)}{2.85 \times 10^{-4} \text{m}^2} = 0.936 \text{m/s}$$


b)
$$A_1 v_1 = A_2 v_2$$

 $v_2 = \frac{A_1}{A_2} v_1 = (2)(0.936 \,\mathrm{m/s}) = 1.87 \,\mathrm{m/s}$

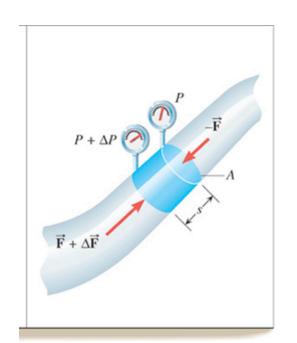
10.5 Bernoulli's Equation

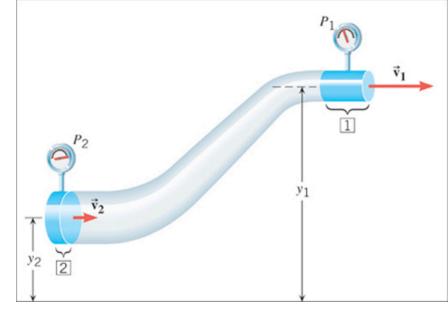
The fluid accelerates toward the lower pressure regions.

According to the pressure-depth relationship, the pressure is lower at higher levels, provided the area of the pipe does not change.

Apply Work-Energy theorem to determine relationship between pressure, height, velocity, of the fluid.

10.5 Bernoulli's Equation


 $E_2 = \frac{1}{2}mv_2^2 + mgy_2$


Work done by tiny pressure "piston"

$$W_{\Delta P} = (\sum F)s = (\Delta F)s = (\Delta PA)s; \quad V = As$$

Work (NC) done by pressure difference from 2 to 1

$$W_{\rm NC} = \left(P_2 - P_1\right)V$$

$$E_1 = \frac{1}{2}mv_1^2 + mgy_1$$

$$W_{NC} = E_1 - E_2 = \left(\frac{1}{2}mv_1^2 + mgy_1\right) - \left(\frac{1}{2}mv_2^2 + mgy_2\right)$$

10.5 Bernoulli's Equation

$$\begin{split} W_{\rm NC} &= \left(P_2 - P_1\right)V \\ W_{\rm NC} &= E_1 - E_2 = \left(\frac{1}{2}mv_1^2 + mgy_1\right) - \left(\frac{1}{2}mv_2^2 + mgy_2\right) & \text{NC Work yields a total Energy change.} \end{split}$$

Equating the two expressions for the work done,

$$(P_2 - P_1)V = (\frac{1}{2}mv_1^2 + mgy_1) - (\frac{1}{2}mv_2^2 + mgy_2)$$
 $m = \rho V$

$$(P_2 - P_1) = (\frac{1}{2}\rho v_1^2 + \rho g y_1) - (\frac{1}{2}\rho v_2^2 + \rho g y_2)$$

Rearrange to obtain Bernoulli's Equation

BERNOULLI'S EQUATION

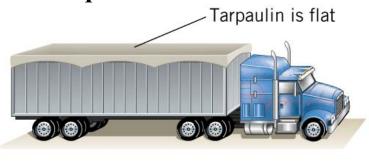
In steady flow of a nonviscous, incompressible fluid, the pressure, the fluid speed, and the elevation at two points are related by:

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$$

10.5 Applications of Bernoulli's Equation

Conceptual Example: Tarpaulins and Bernoulli's Equation

When the truck is stationary, the tarpaulin lies flat, but it bulges outward when the truck is speeding down the highway.


Account for this behavior.

Bernoulli's Equation

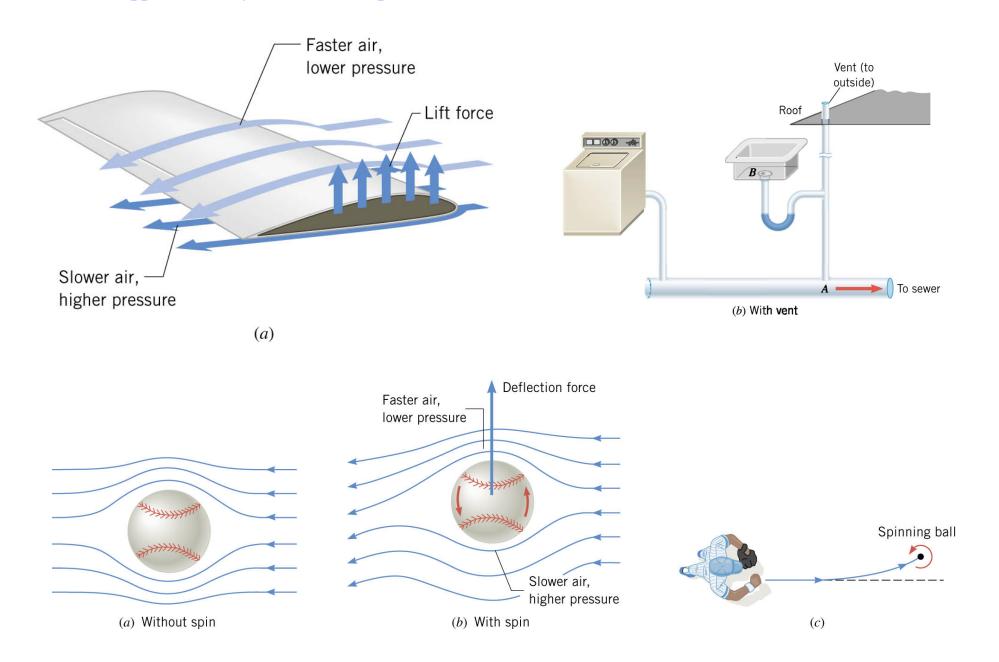
$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$$

$$P_1 = P_2 + \frac{1}{2}\rho v_2^2$$

$$P_{1} > P_{2}$$

Stationary

Relative to moving truck


 $v_1 = 0$ under the tarp

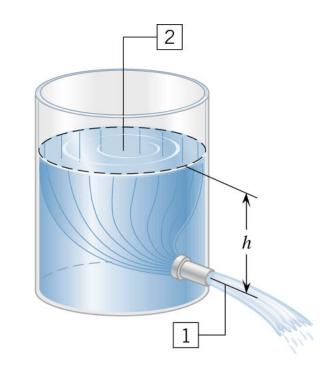
 v_2 air flow over top

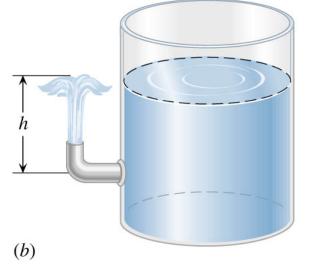
Moving

10.5 Applications of Bernoulli's Equation

10.5 Applications of Bernoulli's Equation

Example: Efflux Speed


The tank is open to the atmosphere at the top. Find and expression for the speed of the liquid leaving the pipe at the bottom.

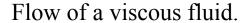

$$P_1 = P_2 = P_{atmosphere} (1 \times 10^5 \text{ N/m}^2)$$

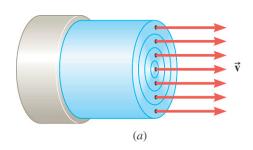
 $v_2 = 0, \quad y_2 = h, \quad y_1 = 0$

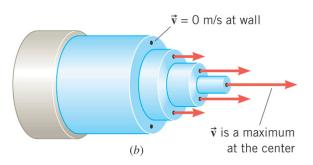
$$P_{1} + \frac{1}{2}\rho v_{1}^{2} + \rho g y_{1} = P_{2} + \frac{1}{2}\rho v_{2}^{2} + \rho g y_{2}$$

$$\frac{1}{2}\rho v_{1}^{2} = \rho g h$$

$$v_1 = \sqrt{2gh}$$






(a)

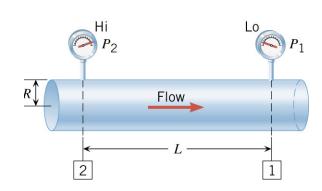
10.6 Viscous Flow

Flow of an ideal fluid.

FORCE NEEDED TO MOVE A LAYER OF VISCOUS FLUID WITH CONSTANT VELOCITY

The magnitude of the tangential force required to move a fluid layer at a constant speed is given by:

$$F = \frac{\eta A v}{y}$$


 η , is the coefficient of viscosity SI Unit: Pa·s; 1 poise (P) = 0.1 Pa·s

POISEUILLE'S LAW (flow of viscous fluid)

The volume flow rate is given by:

$$Q = \frac{\pi R^4 \left(P_2 - P_1 \right)}{8\eta L}$$

Pressure drop in a straight uniform diamater pipe.

11.11 Viscous Flow

Example: Giving and Injection

A syringe is filled with a solution whose viscosity is 1.5×10^{-3} Pa·s. The internal radius of the needle is 4.0×10^{-4} m.

The gauge pressure in the vein is 1900 Pa. What force must be applied to the plunger, so that $1.0 \times 10^{-6} \text{m}^3$ of fluid can be injected in 3.0 s?

at 1.0x10⁻⁶m³ of fluid can be injected
0 s?

$$P_2 - P_1 = \frac{8\eta LQ}{\pi R^4}$$

$$= \frac{8(1.5 \times 10^{-3} \text{Pa} \cdot \text{s})(0.025 \text{ m})(1.0 \times 10^{-6} \text{ m}^3/3.0 \text{ s})}{\pi (4.0 \times 10^{-4} \text{m})^4} = 1200 \text{ Pa}$$

 $P_2 = (1200 + P_1)$ Pa = (1200 + 1900)Pa = 3100 Pa

Area = $8.0 \times 10^{-5} \text{ m}^2$

0.025 m

$$F = P_2 A = (3100 \text{ Pa})(8.0 \times 10^{-5} \text{ m}^2) = 0.25 \text{N}$$