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Part I: Thin Converging Lens 
 
This experiment is a classic exercise in geometric optics. The goal is to measure the 
radius of curvature and focal length of a single converging lens from which you can 
calculate the index of refraction n. We shall explicitly consider the errors that accompany 
any measurement and how errors are analyzed to yield a quantitative estimate of 
uncertainty. This includes quantities derived from measurements, in this case the index of 
refraction.   

In the procedures for this lab, you are asked to estimate the uncertainties.  Please see 
Appendix I and II for reference material and some relevant equations. The questions, 
labeled Q1, Q2, … should be explicitly addressed in your write-up in the Analysis & 
Discussion section.  

Procedures 
A. By definition, the focal length f of a lens is the image distance from the lens center for 

an infinitely distance object. To obtain a rough estimate of f, project an image of the 
trees outside the lab onto the white paper near the door.  Use a 3” diameter lens 
labeled A,B,C, or D. 

       Q1. Why do the trees appear upside down?  
Describe a method to measure the height of a tree based on this imaging method. 
Apply this method to “estimate” the height of a tree around the BPS building. 
Estimate the image size of the moon and Sun using this given lens?  

  
B. Use a spherometer to measure the radius of curvature of both surfaces of your lens.  

See Appendix I. You begin by finding the “zero” position, x0, using a scratch-free 
spot on your bench (a good approximation to a flat surface). Then perform the 
measurement with your lens in place, x1; the distance h is then |x0- x1|. Repeat the 
measurements a few times to obtain an estimate of the spherometer’s precision.  
Rulers, calipers, graph paper, and markers are available. 
Q2. Having estimated measurement uncertainties δx0 and δx1, write an expression for 
σh and evaluate it using your data.  

  
C. Arrange an object (the T on the lamp window) and screen with a separation greater 

than 4f on the optical rail.  Locate the lens position which gives a sharp image on the 
screen. Record the object and image distances measured from the center of the lens 
including uncertainties.  Use the thin lens equation to calculate f and σf.  Repeat this 
for 4 positions of the screen increasing the object-screen separation in units of about 2 
cm. Find the best value for the focal length. 
Q3. How does the best value for f compare to your original rough estimate?  

D. Insert a variable iris before/after the lens.  Observe the image as the aperture size is 
changed.  Specifically note whether it affects your ability to focus the image. 

      Q4. What is the meaning of the term “depth of field” (DOF)?  
Estimate the depth of field for your setup or a camera. 
Refs: Depth of Field Calculator - http://www.dofmaster.com/dofjs.html  
         Depth of field - Wikipedia - http://en.wikipedia.org/wiki/Depth_of_field  
The f-number (f-stop, f/#) is the focal length divided by the "effective" aperture 
diameter. 
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E. Place the light source a distance less than f from the lens. Try to position the screen to 

bring the object into focus.  
      Q5. How do you explain your observations? 

Calculate the index of refraction (including uncertainty) for the glass of your lens 
using the lensmaker’s Equation. Compare with known values for n.   
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Part II: Thin Divergent Lens 

For a divergent lens, all principles and conventions used for a convergent lens will apply. 
The key difference is that a divergent lens cannot by itself form a real image of a real 
object. Hence, in this experiment we will measure f using a virtual object. The virtual 
object and real image are on the same side of the lens.  You will measure the radius of 
curvature and focal length, then calculate the index of refraction of the glass.  Be sure to 
consider error propagation in your final results. 

Procedure: 

A. Use a spherometer to measure the radius of curvature of a divergent lens.  

Determine the focal length using the lensmaker’s equation. 

B. Use a convergent lens L1 to form a sharp image i1 of your object on a screen using the 
lamp as a source. Next, place a divergent lens L2 between L1 and i1 as shown below. 
Measure the distances to i1 (=Si1) and i2 (=Si2), the distance between two lenses (d), 
and the object distance (S0) to calculate f for the divergent lens.  
[You may use the formula given in Appendix II-1.]  

Repeat this for 3 positions of i2 by changing the lens-screen separation in units of 
about 1 cm.  
Find the best value for the focal length using the thin-lens equation.  

Q6. Make a quantitative comparison of the L2 focal length obtained by the two 
different methods.  Do they agree within experimental error?  How could you 
improve either measurement? 

 

C. Calculate the index of refraction (including uncertainty) for the glass of your lens 
using the lensmaker’s equation. Compare this with the value found in Part I. 

Before leaving the laboratory, make rough estimates of all quantities that need to be 
calculated or included in your report. 
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Appendix I-1:  Lens Equations 
 
Thin Lens Equation  
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Appendix I-2:  Error Analysis 
 

Random fluctuations in the measurement process lead to a Gaussian distribution 
about the true value. This distribution gives us a parameter, σ, called the “standard 
deviation”.  (Systematic errors lead to a non-Gaussian distribution.)  Essentially, if many 
measurements xi are taken, 68% of the data points lie within xx σ± , where x is the mean 
value of x.   

Now, suppose an arbitrary function f(x,y) depends on the variables x and y, 
assumed to be independent of each other. How do we compute the uncertainty in f, σf, 
given σy and σx?  Under the assumption that the uncertainties are small compared to the 
absolute value of the quantities in question 
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For errors that are much smaller than the measured values, specific functions yield: 
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When we make N measurements of the same quantity x, each with an uncertainty δx, we 
expect that after averaging the measurement will have uncertainty smaller than δx.  In 
fact, the value of σx varies as N/1 when N is large. 
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Appendix II-1: Thin Lens Combination 

 

The image position for two thin lenses is 

  

si2 =
f2d −

f2so1 f1

(so1 − f1)

d − f2 −
so1 f1

(so1 − f1)
 

where so is the position of the object (before either lens), and d is the distance between the 
lenses.  If so = ∞, and d=f1+f2, then si = ∞.  This is a Galilean telescope. 
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(Source: Ch. 5.2 “Optics”, by Hecht) 


