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References 
• “An Introduction to Error Analysis, 
The Study of Uncertainties in physical 
measurements”, 2nd edition, John. R. 
Taylor, 1997. 

• http://www.lon-capa.org/~mmp/labs/
error 

• Class Website 
– http://www.pa.msu.edu/courses/PHY451/ 
– Some materials pass word protected due to 

copyright issues  
– Pass word  wuli451! 
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Accuracy, Precision, Error, Uncertainty 
• Accuracy: Difference between measurements and true value (Xc) 
• Precision: Spread in measurements (reproducibility, repeatability etc.) 
 
 
 
 
 
 
 

Figure from:
http://www.edn.com/design/test-and-measurement/4388718/Manage-your-
measurement-errors 
• Error: Accuracy but since don’t usually know true value not used 
• Uncertainty: Interval in which repeated measurements fall – usually 

used as does not require true value 
– Random uncertainty decreases precision  
– Systematic uncertainty decreases accuracy 
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Uncertainty 
• Uncertainty describes range over which true value likely to lie 

– Procedure (experiment) dependent 
– If again use same procedure under same conditions, should get new 

result but with difference between results similar to uncertainty 
– If use same procedure but under different conditions may or may not 

get result with difference between results similar to uncertainty 
• Multiple measurements of same quantity can lead to distribution of 

measurements typically centered about average value and ranging in 
value above and below the average 
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Distribution 
• If Gaussian (normal) distribution  

– Standard deviation = σx  

– Average (mean) value  
– Uncertainty  
Ø  ±1σ = 68.3% of measurements 
Ø  ±2σ = 95.5% of measurements 
Ø  ±3σ = 99.7% of measurements 
Ø  Full width at half-maximum              
Γ = 2.355 σx 

• Figure From: 
http://hyperphysics.phy-astr.gsu.edu/
hbase/math/gaufcn2.html 
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Uncertainty & Distribution 
•  If measurements follow Gaussian (normal) distribution, then quoted 

uncertainty related to confidence level – see Distribution slide  
• E.g. if quote Length L =  9.6 m ± 0.2 m and measurements follow normal 

distribution then: 
– If 0.2m is 1 sigma – means 68.3% of values fall within (31.7% without) 
– If 0.2m is 2 sigma – means 95.5% of values fall within (4.5% without) 
– If 0.2m is 3 sigma – means 99.7% of values fall within (0.3% without) 
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Measurements - 1 
Measured values can vary due to a bias typically causing systematic 
uncertainty affecting all measurements in the same way so can be hard to 
detect – e.g.   

» Ruler with incorrect scale can consistently give a reading too high 
or too low. 
–  Solution may be to use multiple other “rulers” with identified 

“bad one” thrown out & replaced with “good one”!
– Data with “bad ruler” could be corrected if know in what way 

(too high or low and by how much) “bad ruler” deviated  !
» Meter can read systematically too high or too low but can have a 

calibration sequence that brings meter readings into compliance. 
Calibration may be lost over time and need to be consistently 
repeated.  

•  For values with spread or distribution on repetition of particular 
measurement -  taking multiple measurements can reduce uncertainties 
– but won’t reduce systematic uncertainty 



R.C. York, 9/4/14, Slide 8 

Measurements - 2 
•  Measurements repeated in same way can identify variance  which can be due to 

e.g.  
– External variables 

» Earthquakes – can distort data during (movement) and/or after  
(misalignment) of apparatus 

» Commercial radio – could distort data due to radio frequency noise but 
possibly only at specific times depending on station broad cast schedule 

» Field distorting equipment introduced into experimental system like 
vibrating machinery near sensitive optical system could cause larger 
variance in data from before introduction but constant (variance) after or 
could cause systematic error 

– Internal variables  - experimental equipment changing / failing – will effect 
data differently if short or long compared to data taking time – e.g. if piece of 
equipment fails over seconds can cause large variance in data set-to-data set 
(easier to discover) or  e.g. if fails over weeks then can cause small variance 
in data set-to-data set (harder to discover) or even worse be intermittent 
(hardest to discover) 

– Experimental approach – if get consistent results (same mean / variance) then 
infers that random uncertainties are cause   
» But does not rule out possibility of also having a systematic uncertainty 
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Measurements - 3 
Measurements of same quantity in more than one way can help identify variance 
or bias or to otherwise confirm / reduce uncertainty in experimental result.  

– External variables to experiment 
» Can work to control / test for external variables by maintaining / policing 

experimental area for offending elements  
» Can develop methodologies less sensitive to external influences – e.g 

better mechanical / electrical isolation of experiment 
– Internal variables to experiment 

» Can develop test/calibration procedures to ensure hardware is operating 
properly 

» Can develop alternative methodologies to test against systematic 
uncertainties, to reduce other uncertainties 

– Experimental approaches – if get consistent results  infers that have valid 
result to the degree that different experimental methodologies can provide 
independent approaches and not all likely to have uncertainties in same way  
» Reduces but does not completely rule out possibility of systematic 

uncertainty 
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Experiments - 1 
•  Careful planning 

– Understand experiment before start taking data. What is goal? 
– What measurements are required to achieve goal and how will these be obtained? 
– Be knowledgeable about other’s prior efforts / approaches.  
– Consider alternatives to prior approaches. 
– Are there alternative / better methods to obtain / cross check these measurements? 
– Are there measurements more important (affect result more strongly) than others? 

Don’t want to waste effort on improving measurement of parameter that is of little or no 
consequence to result. Focus on  those with largest impact.  

•  Careful execution 
– Keep meticulous notebook  - necessary approach for this course and important for 

your future endeavors whether industry or academia 
– Going completely through experiment “quickly” can provide early opportunity to see 

that can fully get necessary information for result and early identification of 
measurement problems, oversights, etc. 

– “Quick” pass provides better understanding so can enhance outcome of further more 
methodical experimentation 

– Methodical experimentation should involve cross checks to see if  consistent and 
making “sense”  
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Experiments - 2 
•  Data Analyses 

– Understand analyses and how going to do it or you may miss data you need 
– Best to analyze / plot data as you go for early identification of missing or bad data 
– Think about publication and what figures / plots are necessary so have necessary data 
– Keep watch on sources of errors  
– Document process/procedure in lab notebook.  
– Some data sets too large for notebook representation - Be sure store / document 

location of data sets  
– Process data at least a cursory level as soon as possible to have early identification of 

possible issues, inconsistencies etc.  

•  “Publication” 
–  Important to develop communication skills – presentations and papers of your 

experimental results provide good opportunities 
– Need to be able to explain clearly, concisely, and without bias (don’t exaggerate or 

dramatically under rate your results) 
» Explanation channel typically both in written document as well as oral presentations 

– Both skills important and improve only with practice 
» Discussions with lab partners / colleagues helps bring issues/concepts in to focus 

providing better written and oral presentations 
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Measurement Result 
State as Best Estimate ± Uncertainty or x ± δx – e.g. 
• Single measurements 

– Use measured value for best estimate  
– For uncertainty - use accuracy of device e.g. 

» Ruler marked in mm might have error of ~1mmè±0.5mm 
» Micrometer might have error of ~0.1 mm è±0.05mm 

• Multiple measurements  
– Use average value for best value  
– For uncertainty use standard deviation (defined later) 

Measured quantities often used to calculate additional value – e.g. 

• Area = length (L) x width (W)  
If have measured L ± δL and W± δW, what is uncertainty in Area? 

See Uncertainty Propagation 
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Simple Uncertainty Propagation - 1 
• Correlated Uncertainty  

– Measured quantities added or subtracted è uncertainties (δs) add 
» Z = B + C – D, uncertainty in Z from uncertainties in  B, C, & D 

Ø δZ = δB + δC + δD!
– Measured quantities multiplied or divided è  fractional uncertainties add 

» Z = B�C/D, uncertainty in Z from uncertainties in  B, C, & D 
Ø δZ/ |Z| = δB/ |B| + δC/ |C| + δD/ |D|!

• Uncorrelated Uncertainty  
– Measured quantities added or subtracted è uncertainties add in quadrature 

» Z = B + C – D, uncertainty in Z from uncertainties in  B, C, & D 
Ø δZ = (δB2 + δC2 + δD2)0.5!

– Measured quantities multiplied or divided è  fractional uncertainties add in 
quadrature 
» Z = B�C/D, uncertainty in Z from uncertainty in  B, C, & D 

Ø δZ/ |Z|= ( (δB/ |B|)2 + (δC/ |C|)2 + (δD/ |D|)2 )0.5!
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Simple Uncertainty Propagation - 2 
• Events occur randomly but with definite rate è counting 
experiment – x counts 
Ø Uncertainty (standard deviation) from  sqrt (counts) or  
Ø Example – how many counts necessary to have 10% error with 95% 

confidence? 
Ø  2σ=2δx=2*(x)0.5 = 95% confidence (see Distribution slide) 
Ø  Then want 10% or  2*(x)0.5 / x = 0.1 è x=400 counts 

• Uncertainty with power function è Z = Bn 

Ø δZ/ |Z| = n�(δB/ |B|) 
 

  

δ x = 1⋅σ x = x
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Statistics - 1 
• Average, mean,  ‘typical value’ 

Ø n measurements 

 
• Standard deviation, variance, 

• Result     
 
 

xi

n

x
x i

i∑
=

x

σ x =
∑
i
(xi − x )

2

n−1
= 〈x − x 〉

x ± δ x
δ x = k ⋅σ x ,k = 1,2,3...
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Statistics – 2  
• Function Z = f(u,v) 

Ø Variance   

Ø Covariance 
 

  

σ u =
∑
i
(ui − u )

2

n−1
= 〈u − u 〉

σ v =
∑
i
(vi − v )

2

n−1
= 〈v − v 〉

σ vu =
∑
i
(vi − v )(ui − u )

n−1
= 〈(v − v )(ui − u )〉
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General Uncertainty Propagation - 1 
• Function Z = f(u,v) 

• If uncorrelated è  
• Example: Z = f(u,v) =  a�u + b�v 

Ø Uncorrelated è add in quadrature è 

Ø Correlated è add è  

• Example: Z = f(u,v) =  a�u/v 
 
 
Ø Uncorrelated è add fractionally in quadrature è 

Ø Correlated è add fractionally è  

σ Z
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2 (∂ f / ∂u)2 +σ v
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σ Z
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General Uncertainty  Propagation - 2 
• Example: Z = f(u,v) =  a�ub 

• Example: Z = f(u,v) =  a�ebu 
 

σ Z =σ u (a ⋅b ⋅u
b−1) σ Z

Z
= σ u ⋅b

u

σ Z =σ u (a ⋅b ⋅e
bu )

σ Z

Z
= b ⋅σ u


