Vacuum Technology

PHY451 October 22, 2014

Some References

- <u>http://uspas.fnal.gov/materials/13Duke/</u> <u>Duke VacuumScience.shtml</u>
- <u>http://physics.ucsd.edu/~tmurphy/phys121/lectures/</u> 06 vacuum.ppt
- <u>http://www.oerlikon.com/ecomaXL/files/</u> <u>oerlikon_FUNDAMENTALS.PDF&download=1</u>

Vacuum – [1]

- Vacuum when gas has the density of the particles less than atmospheric pressure
- Vacuum systems necessary to remove and maintain removal of gases in some volume
- Vacuum used e.g.
 - Oxygen removed from light bulb to protect filament & in food processing to preserve
 - -Create force for forming plastic sheets
 - -Deposition to create insulators, conductors, etc
 - -Electron beam microscope
 - –Particle accelerators
 - -Cryogenic system insulation

Vacuum - [2]

Pressure Ranges

- Atmosphere ~760 torr
- Rough Vacuum ~10⁻³ torr
- High Vacuum ~10⁻³ to 10⁻⁶ torr
- Very High Vacuum ~10⁻⁶ to 10⁻⁹ torr
- Ultra High Vacuum ~10⁻⁹ to 10⁻¹² torr
- **Example Values**
- Deep space ~<10⁻¹⁷ torr
- Mars surface ~5 torr
- Lunar surface ~10⁻¹¹ torr
- Geosynchronous satellites ~10⁻¹¹ torr
- Space station ~10⁻⁹ torr
- Above earth [12 km (airline) ~140 torr], [32 km ~8torr], [80.5 km ~10⁻³ torr]

Vacuum – [3]

- Gas composition and pressure can have wide variance.
 - Depending on application acceptable residual gas density can vary from 10¹⁰ to 10⁴ molecules per cm³
 - Initial gas composition initially air but later largely driven by pumping technique and source of gas
 - » Initial "vacuum" mainly air N₂ (78.08%), O₂ (20.95%), CO₂ (0.037%)

General Gas Equation

- P = pressure [Pa; N / m2]
- T = thermodynamic temperature [K]
- *n* = molecular number density [1 / m³]
- $k = \text{Boltzmann's constant } k = 1.380 \cdot 10^{-23} \text{ J/K}$

$$P = n \cdot k \cdot T$$

Pressure Units

• Pressure = Force/Area

–E.G., 6 inch diameter plate with vacuum / atmosphere interfaces
 →~416 pounds force

- Pressure units
 - Pascal (N/m²) = Pa, bar = 10^5 Pa, Torr = mmHg,
 - micron = μ mHg, psi = lbs/inch²
 - −1 atmosphere (atm) →
 - » 1.01325 bar = 1.01325 x 10⁵ Pa
 - » 760 torr = 760 mmHg = 760 x 10^3 micron
 - » 14.7 psi (pounds per square inch)
 - -1 torr = 133.32 Pa = 1.3332 mbar
- At standard temperature (273.15 K = 0°C) & pressure (1atm)→ 22.414 liters contains 6.02 x 10²³ particles (molecular weight in grams) → molecular density (1/cm³) = 6.02 x 10²³ particles / 22414 cm³ = 2.7 x 10¹⁹ molecules/cm³
- At 10⁻³ torr \Rightarrow 2.7 x 10¹⁹ / 760 x 10³ = 3.6 x 10¹³ molecules/cm³

MICHIGAN STATE UNIVERSITY

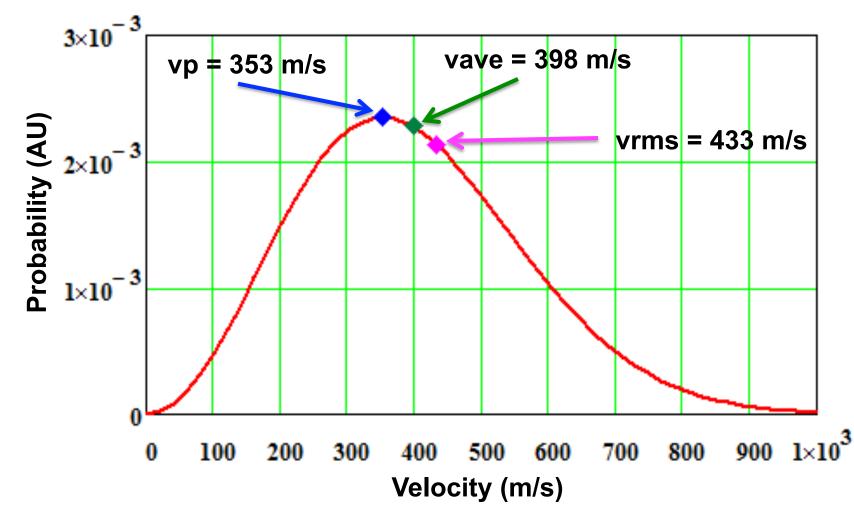
Maxwell Boltzman – [1]

- Gas particles move randomly but with specific velocity given by Maxwell-Boltzmann Distribution = f
- f is probability distribution that is function of particle velocity (v), mass, and temperature T velocity does <u>not</u> depend on pressure
 3

$$f(v, mass, T) := 4\pi \left(\frac{mass}{2\pi k T}\right)^2 v^2 e^{-\frac{mass T}{2k T}}$$

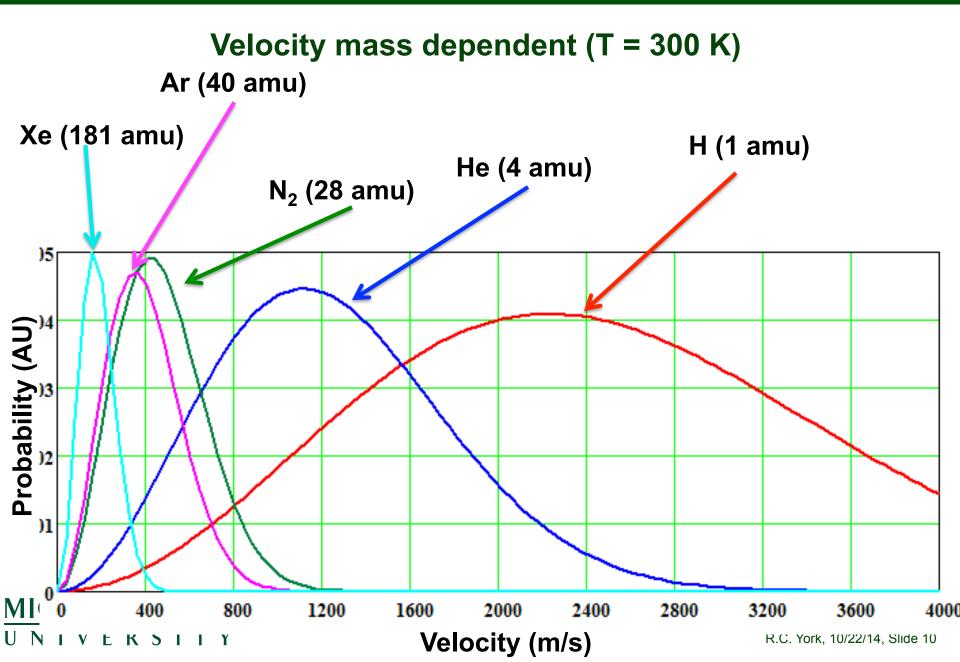
-k= Boltzman Constant = 1.380650424*10⁻²³ (joule/K)

-T = temperature (K)

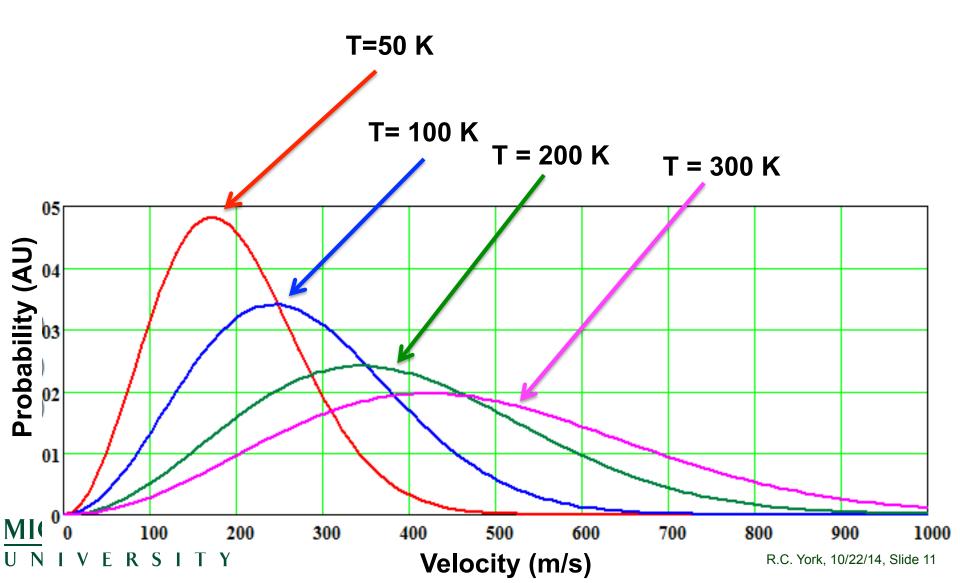

IVERSI

- -Mass = kg = molecular weight in AMU x $1.6605402*10^{-27}$ kg/AMU
- Most probable velocity = vp • Mean velocity = vave $\left(\frac{8k}{mass\pi}\right)^{0.5}$ vave=1.1284 x vp • RMS velocity = vrms $\left(\frac{3k}{mass}\right)^{0.5}$ vrms=1.2247 x vp MICHIGAN STATE

R.C. York, 10/22/14, Slide 8


Maxwell-Boltzmann – [2]

Probability velocity distribution for ⁴⁰Ar at 300 K



Maxwell-Boltzmann – [3]

Maxwell-Boltzmann – [4]

Velocity temperature (T) dependent (N₂ mass = 28 amu)

Maxwell Boltzman – [5]

- Energy depends only on T
- Average energy = Eave = mass x vrms²/2 = 3kT/2
- E(T=50K)=6.5 meV, E(T=100K)=12.9 meV, E(T=300K)=38.8 meV
- Most probable energy = Ep = mass x vp²/2 = kT/2

Mean Free Path – [1]

Mean free path (λ) is average distance before colliding with another molecule

- $\lambda = 1/[(2)^{0.5} \pi d_o^2 n] = k T / [(2)^{0.5} \pi d_o^2 P]$
 - $-\lambda$ = mean free path (m)
 - $-d_o = diameter of molecule (m)$
 - »For Air average diameter ~3.74 x 10⁻¹⁰ m
 - n = molecular density (m⁻³)
 - » n (stand. temp. & pressure STP)= nstp*Tstp*P/(T*Pstp)
 - nstp (Tstp, Pstp)= 2.7 x 10¹⁹ molecules/cm³
 - T = Temperature (K)
 - P = Pressure (Pa)
 - $k = Boltzmann constant = 1.38 \times 10^{-23} m^2 kg s^{-2} K^{-1}$

Mean Free Path – [2]

- Mean free path (λ) is average distance before colliding with another molecule values shown for air T=303.15 K (30 °C)
- λ (cm) = 1.646 x 10⁻⁵T (K)/P(torr)
- λ (cm) = 2.1945 x 10⁻³T (K)/P(Pa)
- Once λ similar to vacuum vessel dimension only collisions with vacuum walls dominate – not molecules colliding with molecules
 - i.e. <10⁻³ torr

P(torr)	760	1	10 -3	10 ⁻⁶	10 -9
λ (cm)	6.6 x 10 ⁻⁶	5.0 x 10 ⁻³	5.0	5.0 x 10^3	5.0 x 10⁶

Molecular Collisions

- Rate of gas striking surface Γ(molecules per m⁻²s⁻¹):
- $\Gamma(m^{-2}s^{-1}) = n \text{ vave}/4 = n (kT/(2\pi m)^{0.5} \text{ where } n = \text{gas density}$
- Since for Air average diameter ~3.74 x 10⁻¹⁰ m
 - Area ~ 1.1 x 10⁻¹⁹ m²
- Then for N₂ at 10⁻⁶ torr
 - get monolayer in 1.1 x 10^{-19} x 3.9 x $10^{18} \sim 0.4$ s

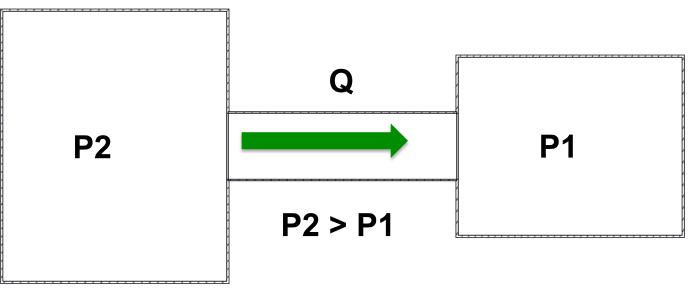
Р	n	Particle Flux (m ⁻² s ⁻¹)				
(torr)	(m ⁻³)	H ₂	H ₂ 0	N ₂		
760	2.5 x 10 ²⁵	1.1 x 10 ²⁸	3.7 x 10 ²⁷	2.9 x 10 ²⁷		
10-6	3.2 x 10 ¹⁶	1.4 x 10 ¹⁹	4.8 x 10 ¹⁸	3.9 x 10 ¹⁸		

Gas Flow – [1]

- Knudsen number (Kn) is ratio of mean free path and flow channel diameter (a)
- Kn = λ /a
- If Kn < 0.01 flow driven by molecule-molecule collisions
 - -Molecules travel in uniform motion toward lower pressure
 - -Can be laminar or turbulent
- If 0.01 < Kn < 1 flow is in transition
- If Kn > 1 flow driven by molecule-wall collisions

Gas Flow – [2]

• Throughput = Q = gas flow rate = d(PV)/dt

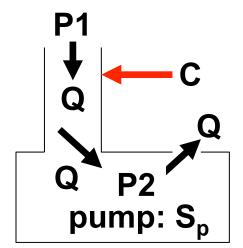

–Q in Pa-m³/s (= 7.5 torr-liter/s)

- •Gas conductance = C = Q/(P2-P1)
 - P1 = pressure outlet, P2 = pressure inlet
 - C in m³/s (= 1000 liter/s)
- Pumping speed = S = dV/dt (liters/second)
- Q = (P2-P1)xC

MICHIGAN STATE

RSI

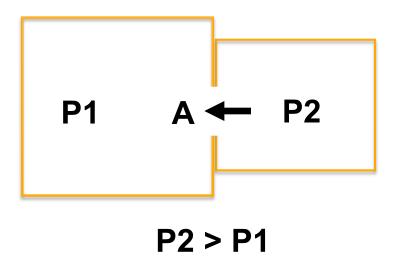
UN


Evacuation Rate

- Evacuation rate at chamber Seff = Q/P1
- Evacuation rate at pump is Sp = Q/P2
- Q = constant (mass conserved) = (P1-P2)C
- Combining get 1/Seff = 1/Sp + 1/C (like resistors in parallel)
 - -Most restrictive will dominate

• E.G.

- -if pump has Sp = 100 liter/s
- -C for round tube is C = 12.1 D³/L (liter/sec), D= ID of tube (cm), L = length of tube (cm) – NOTE diameter dependence to 3rd power
 - » For ID= 6, L=30 cm then C=86 liter/sec
 - » Seff = 46 liter/sec or pumping speed reduced to 46% by tube conductance!


Conductance

Round Tube of diameter D, Length L → C(m³/s) α (T/Mamu)^{0.5}
 D³/L

-For Air (Mamu=29 at 22 °C) C = 12.1 D³/L (liters/sec)

• For aperture A \rightarrow C(m³/s) α (T/Mamu)^{0.5} A(m²)

-For Air (Mamu=29 at 22 °C) C(liters/sec) = 11.6 A (cm²)

Pump-down time

- To go from pressure P1 to P2 takes time t
- t = V(liters)/S(liter/s) x In (P1/P2)

–E.G., If V = 10 liters, S = 10 liter/sec P1 = 760 torr, P2 = 10^{-6} torr – t ~ 18 s

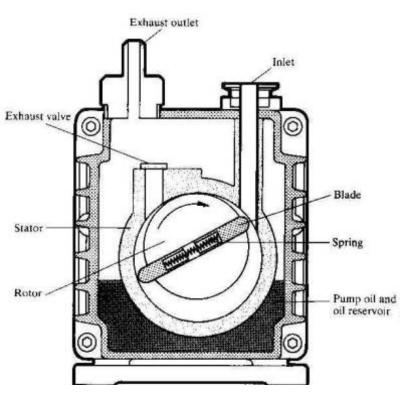
 BUT other sources to vacuum load – e.g. water evaporating from vacuum surfaces – make time dramatically longer – e.g. hours

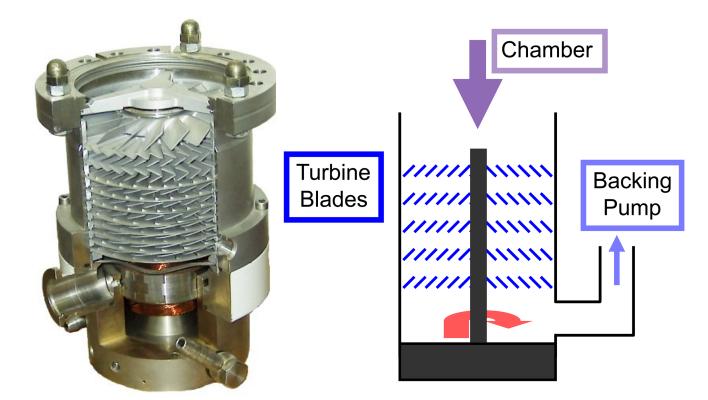
20

Mechanical Pumps

Roughing pump

- To begin process from ~ atmosphere down to ~ 10⁻³ torr
- Uses oil to seal between rotating blade to push molecules from inlet to outlet



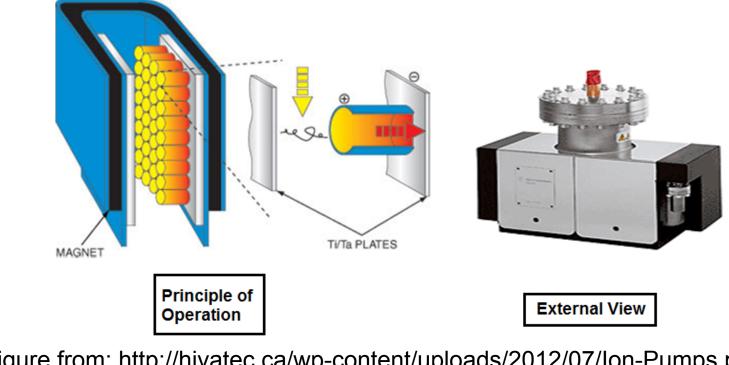

Figure from: <u>http://physics.ucsd.edu/~tmurphy/phys121/lectures/06_vacuum.ppt</u>

Turbomolecular Pumps

- Turbomolecular pumps often used at <10⁻² torr as next stage pumping after mechanical (roughing) pump
- Turbomolecular pump is connected to mechanical (backing) pump so that pressure differential is between chamber vacuum and ~10⁻³ torr of roughing (backing) pump
- Rotating blades (~ 24,000 rpm) push molecules from chamber to backing pump get vacuums <~10⁻⁶ torr

MICHIGAN STATE

IVERSITY


Cryogenic Pumps

- Cryogenic pumps have surface cooled to LN₂ (77 K) or He (4 K)
- Pumping action is "freezing" molecules on cold surface
- Pumping speed determined by surface area
- Can be very fast and remove largest components of gas (e.g. H₂O and N₂)
- BUT requires cryogenics to make/maintain temperature
- BUT additional surface layers of "frozen molecules" makes pump increasingly less effective
 - Then needs to be "regenerated" warmed up to release frozen molecules
 - If not isolated from vacuum system before regeneration then full accumulated gas load dumped back into system
- Also used as "cold trap" to prevent e.g. carbon-based (oil from roughing pump) from contaminating vacuum chamber

Ion Pump

- Removes molecules by ionizing molecules that are then driven by voltage to chemically active surface
- Typically for Ultra-High Vacuum applications (10⁻¹¹ torr)
 - Used after Turbomolecular or when vacuum <~10⁻⁵ torr
 - Mechanically simple but only for very low pressures
- Current from ionized molecules is proportional to pressure so can use current as pressure gauge

MICHIGAN UNIVER SILLI K.C. TOIK, 10/22/14, SILDE 24