PHY422 Homework Set 3

1. [10 pts] Johnson, problem 2.5. The proper expression for the total kinetic energy gained by the rocket is

$$
\Delta K_{r}=\frac{1}{2} m_{0}\left\{v_{1}^{2} \mathrm{e}^{-\left(v_{1}-v_{0}\right) / v_{e}}-v_{0}^{2}\right\}
$$

The proper expression for the total kinetic energy in the exhaust cloud is

$$
\Delta K_{c}=\frac{1}{2} m_{0} v_{0}^{2}+\frac{1}{2} m_{0} v_{e}^{2}\left\{1-\mathrm{e}^{-\left(v_{1}-v_{0}\right) / v_{e}}\right\}-\frac{1}{2} m_{0} v_{1}^{2} \mathrm{e}^{-\left(v_{1}-v_{0}\right) / v_{e}}
$$

The proper expression for the work done in expelling the gas is

$$
\Delta W=m_{0} v_{e}^{2}\left\{1-\mathrm{e}^{-\left(v_{1}-v_{0}\right) / v_{e}}\right\} .
$$

2. [5 pts] Johnson, problem 2.6. The proper result is

$$
T=2 \sqrt{\frac{2 m}{a}} \tan ^{-1}\left\{\frac{2}{b} \sqrt{a E}\right\}
$$

and other representations of that result are possible, including one close that in the textbook.
3. [5 pts] Johnson, problem 2.7.
4. [5 pts] Johnson, problem 2.11.
5. [5 pts] Based on Johnson, problem 2.20: A particle is moving in the x direction subject to the following differential equation

$$
\ddot{x}=-\beta \dot{x}\left(\dot{x}^{2}+\omega^{2} x^{2}-A^{2}\right)-\omega^{2} x,
$$

where β, A and ω are positive parameters. In addition to a linear restoring force, there is a velocity-dependent force that may either accelerate or decelerate the particle. The model is an extension of simple harmonic motion which occurs for $\beta=0$.

Show that the positive quantity

$$
E(t)=\dot{x}^{2}(t)+\omega^{2} x^{2}(t)
$$

satisfies the relation

$$
\dot{E}(t)=-2 \beta \dot{x}^{2}\left(E(t)-A^{2}\right) .
$$

Show that $E(t)$ decreases with time whenever $E(t)>A^{2}$, and that $E(t)$ increases with time whenever $E(t)<A^{2}$. Also, note that when $E(t)=A^{2}, x$ must depend on time. In fact, the curve

$$
\dot{x}^{2}(t)+\omega^{2} x^{2}(t)=A^{2}
$$

represents the limiting behavior of $x(t)$ in the limit $t \rightarrow \infty$.
The parameter ω is the limiting frequency of oscillation and A / ω is the limiting amplitude, whereas β determines the rate of approach to the limit cycle.

