Programmable Logic Design — |

Read through each section completely before starting so that you have the
benefit of all the directions. Put on a grounded wrist strap (cf. Getting
Started) before touching the Digilab boards.

Introduction

During the last lab you built simple logic circuits on breadboards using TTL logic
circuits on 7400 series chips. This process is simple and easy for small circuits. With
increasing complexity of the logic circuitry, the possibility of wiring errors grows and it
becomes increasingly difficult to debug the circuit. Another problem is in the difficulty of
finding all the needed logic circuitry on available chips. To address these problems the
electronics industry has developed the concepts of Programmable Logic Devices (PLD’s)
and of Field Programmable Gate Arrays (FPGA’s). The basic idea behind these devices is
the notion that logic circuitry of arbitrary complexity can be constructed from simple
gates connected with appropriate links and the technical advance, that has made this
possible, is the development of large gate arrays with computer programmable links. The
design process then consists of specifying the logic design by means of a logic design
language such as VHDL or by entering it on a schematic layout. A computer program
then turns this design into a series of instructions that are downloaded into the chip to
establish the desired logic circuitry. Facilities are provided to specify the pin-out of the
logic, to control placement of logic circuits on the chip and to impose timing constraints.

Design Tools

For our designs we will be using the Xilinx Corporation (www.xilinx.com) ISE
Foundation 9.2i. We will start by entering our design in the form of a circuit schematic
but, in later stages of the labs, we will also use a high level design language, VHDL, to
benefit from its power and flexibility. In our designs we will sample only a few of the
features and capabilities of this software package which is widely used in the electronics
industry today.

Hardware

We will download our designs into a Digilab D2XL board connected to a Digilab
Digital 1/0 board (D101) shown in Figure 1 below. The FPGA chip on the D2XL board is
a member of the Spartan Il family, the XC2S30, with package type tq144, embodying
972 logic cells with a total of 30,000 gates. While this size of device was state-of-the-art
a few years ago, rapid advances in technology have pushed the largest device sizes to
many millions of gates.

The D2XL board’s 1/0O resources are limited to a single pushbutton and one LED
for use with a test program to verify proper operation. A large variety of 1/0 devices,
however, are available on the D101 board attached to the D2XL by means of two 40 pin
connectors. Our two experiments will exploit the features of the D2XL/DI101 combination
to design a number of circuits that will demonstrate the usefulness of the discussed
procedure.

Getting Started

Hooking up the Hardware

The circuitry is extremely delicate and can easily be destroyed if handled
improperly. Static electricity which is easily generated is particularly dangerous and care
must be taken to wear a grounded wrist strap when handling the circuitry. Your instructor
will show you how to use it properly. Your two boards should be connected to one
another, with power cord installed and with a programming cable, from the parallel port
of the PC to the JTAG connector of the D2XL, attached. Ask your instructor for help if
this is not the case.

L EY

T
|
B

Figure 1: The D2XL and D101 boards with programming cable attached.

Testing the D2XL board

You should have a Xilinx ISE 9.2i icon on your screen. Double click on it to open
the software. As a first program to download we want to use “Di01Demo”(C:/Digilent/
Di01Demo.ise) to test the integrity of the D2XL board and of the attached Digital 1/0 1
board. If another project automatically opens up, close it from the “File” menu and use

S Xitin - ISE - C:\DI01_Demo\Dio1Demo.ise - [Dio1Demo.vhd]

I Fie Edit View Projsct Source Process Window Help [
BEX Do Q2L AP B[E MO AR M0 YiViIEEE BAALAIOO
A% %% 0N
1 ~
z - DicliDewo.VHD -- Demonstrate DZXL Connected to DIOL
3
5 £ we2530 51 44 T R N
m } | -- opyri igilent, Inc.
= [, Dio1Demo - Behavioral (Dio1 Def 5 By 5
[1 o deme, et dial deme. ucf) | 7 -- This wodule is a test circuit to test the Digilah D2XL board connected
< | 8 -- to a Digilsb Digital I/0 1 board ([DIO1).
I &
=3 Sources | gy Snapshots | [Py Libraries
| e B 10 -- This design is for use vith the Revision A Diol boards.
| 11 -- It was developed for use with the Xilinx ISE or Xilinx WebPack tools.
| Pracesses for: DiolDemo - Behavioral 2
| 13 -- Inputs:
O AddExisting Sourcs 14 -- melk - system clock (50Mhz Oscillator on D2XL board)
O Create New Source 15 - Bn - button on the D2EL board
L View Design Summary 16 - Btn - buttons on the DIO1 board (4 buttons)
®% Design Utiies 17— sut - switches on the DIOL board (8 switches)
B3 User Constraints b
& P (D Syrthesize - X5T 19 -- Outputs:
% £2(0) mplement Design 20— ld - discrete LED on the D2EL board
- £3(@ Benerate Frogramring Fie 21— led - discrete LEDS on the DIOL hoard (8 leds)
= o ot E - an ~ anode lines for the 7-seg displays on DIOL
23— s5g - cathodes (seguent lines) for the displays on DIOL
24—
25
26 -- Revision History:
27 -- 03/31/200Z(Gened): created
28
29
30 library IEEE;
31 use IEEE.STD LOGIC_1164.ALL:
32 use IEEE.STD_LOGIC_ARITH.ALL:
33 use IEEE.STD_LOGIC_UNSIGNED.ALL:
34
35 entity DiolDewo is
a6 Pore |
a7 nelk : in std logic;
a8 bn : in std logic;
a9 1d : out std_logic;
40 1ldg : out std_logie;
41 brn : in std logic vector (3 downto O);
4z sut : in std logic vector (7 downto 0);
43 led : out std logic_vector (7 downto 0);
|| aa an : out std logic_vector (3 downto 0); @
il 24} P >
Frocesses
| % & Diesign Summary DiTDemo vhd |
I =1
gtarted : "Leunching ISE Text Editor to edit DiolDewo.vhd". |
v
il 5| Console | @Emas | g\ Warings | {Z TolShell | [Find in Files
In1Coll [CAPS | NOMSCRL[WHDL

Figure 2: Project Navigator

“Open Project” from the same menu to open “Di01Demo”. If you are successful, you
should get a screen display analogous to that in Figure 2.

You actually need to double-click on the 3™ line in the top left window to get the
display such as in the top right window. The above four windows represent the design
environment for the project, with “Sources” in the top left window, the “Processes” for a
given Source below it, the contents of selected files in the right hand window and text
files underneath. On top of the “Sources” window is a tab to select the type of sources to
be displayed. In this instance the sources are those associated with
“Synthesis/Implementation”, but we will also be interested with sources for “Behavioral
Simulation” there.

Before proceeding we need to check that we have selected the proper chip and
simulation software. If you right-click the xcs230-tq144 icon in the “Sources” window
and select “Properties” you should trigger a pop of the window such as shown below:

1= Project Properties @

Property Hame Walue | S
Product Category General Purpose w

F amily Spartanz w
Device =IC2530 w
Fackage TGE144 w
Speed B w
Top-Level Source Type HOL b
Synthesiz Tool #5T WHDLAYerilog) w
Simulator ISE Simulator WHOLAYerilog] w
Frefered Language WHOL w
Enable Enhanced Design Summary

Enable kMeszage Filkering FI "

ak.] [Cancel l [Drefauilt] [Help

Figure 3: Project Properties

Check that the Device and Package types are correctly selected, i.e. such as above, and
under “Simulator” choose “ISE Simulator (VHDL/Verilog)” and “VHDL” for the
Preferred Language. When you are satisfied, close the window.

Extensive help files are available online and at this time it would be a good idea to
go to the “Help” menu and select “Help Topics” -> “FPGA Design” -> “FPGA Design
Flows” and read the chapter “FPGA Design Flow Overview”.

To test our board we are going to select the “Synthesis/Implementation” sources,
to select “Di01Demo-Behavioral” and in the “Processes” window to expand the
“Generate Programming File” and then double-click on “Configure Device (iIMPACT)”.
Doing this puts the program through all of the necessary steps to generate the file for
downloading to the FPGA and to initiate the downloading process.

If you are prompted to do so, choose the Configure devices using Boundary Scan
bullet and select ““Automatically connect a cable and identify a Boundary Scan chain”.
You will then be asked to assign a new configuration file, open ““dioldemo.bit”. If all
goes well, you should wind up with a page such as shown in Figure 4. You may need to
click on the boundary scan tab at the bottom of the main window to get to the right
display.

Following instructions, right-click on the device there and select “Program” and,
if there are no problems, success will be signaled by a “Program Succeeded”
announcement. At this time the 7-segment display should be cycling through the numbers
0 to 9, the slide switches should control their corresponding LED’s and depressing the

push buttons (use the grounded wrist wrap) should interrupt the display on the 7-segment
chip opposite of the button. Also, the push button on the D2XL card, when depressed,
should light up the LED marked “LD1”. If the “Program Succeeded” message came up
and the board did not program properly, unplug the board for 15 seconds, plug it back in
and select “program” again.

E= Xilinx - ISE - C:\DIO1_Demo\Dio1Demo. ise - [Boundary Scan] M=
(=[5

'gb File Edit Wiew Project Source Process Operations Opbions Output Debug Window Help

ODPFPEHS LidBRBRX rﬂ@- l PLHHM B (AN:RE DD
SN 0 | E: FE BN :PD
iy 22 =R 4%%%@ﬁ S IT N ({3 || F|N?

Sources

¥Baoundary Scan

iﬁq

Right click dewice to select operations

SlaveSenial

oSelecttAP i

B Desktop Configuration ol 3," e ;

O EDirect SPI Configuration ’

=] SystemaCE —

@ PROM File Formatter o] demo bit
DD

) Su:uuru:n"m Snap" |E Librari ||:':'f'lﬁEIUTatiDﬂ

Available Operations are;

E'_t" Processes Configuration Operations

= Design Summary " Dol Demo. vhd | @ Boundary Scan

x

Elapzed time = 2 Zec.
PROGEEZS START - Starting Operation.

[

<]

a
g
&

=

Conzole | OEerrs " A Warnings || ﬁTcIShEII " [pg Find in Filez

Configuration | Parallel ITT | 200 KHz | LPT1

Figure 4: Programming page.

If this is so, then the D2XL board and the DI/O1 board are in proper working order and
we can go on to our first project.

Important Xilinx design notes:

1. Create your own directory in the D drive, D:\. Anything put into the root
directory C:/ will be wiped out as soon as you log off. All of your work must be
saved in your new D-drive directory or in its subdirectories. As a back-up, it is a
good idea to copy your directory contents onto a flash drive before logging off.
Your directory and subdirectories CANNOT contain any spaces.

3. DO NOT name any of your projects or design elements by any reserved logical
names such as, AND, OR, COUNTER, BUS, OUTPUT, etc ...

4. If you ignore any of these three notes, your project will not work! You will have
to start the project over from the beginning. Depending on the project this
could cost you a considerable amount of time. In addition, if one of your
projects fails for one of these three reasons, points will be deducted from your
lab score.

5. If implementing your design to your D2XL and D101 boards does not work, try
restarting the board by disconnecting it from the power supply.

no

Design Project |

For our first project we will use “Schematic Entry” to design a circuit with a
single AND gate. We will use “ISE Simulator” to test proper operation for our design,
attach push buttons to the two inputs and an LED to the output, download the design into
the FPGA and test operation of the completed circuit.

Schematic Entry

Go to the “Help” window, select “Help Topics” and then read the chapter FPGA
Design/Design Entry/Schematics. Close the current project and refrain from saving the
configuration file. Select “File” “New Project” to get to the Project Wizard. Choose a
Project Name, Project Location on the D drive and Schematic for Top-Level Source
Type. Check that the appropriate hardware is selected (see before) and that “ISE
Simulator” is chosen. Do not create a new source nor add an old one at this time, but
continue until the process finishes and displays the Design Environment again. Select the
“Synthesis/Implementation” tab; click on your device name and in the “Processes”
window click “Create New Source”. From the choices given, select “Schematic” and give
it a name of your choosing. When the Wizard finishes, a schematic entry window is
created representing your schematic file with an extension .sch. Open that window. Click
on the “Symbols” tab in the “sources” window; choose “Logic” from the categories in the
sources window. (If your “Sources” window is too small and you cannot get the symbols
or categories scroll bars to work, increase the height of the “Sources” window.) Select
“and2” under symbols and place it in the schematic entry window. You may wish to
magnify the drawing for better viewing. Next add input and output buffers to the two
inputs and to one output using the “buf” symbol. (The buffers are needed to interface
between different technologies of logic devices; they can be found in the “Buffer”
category.) You will need the wiring tool to make the connections. Each input needs an

input marker and the output needs an output marker, which can be generated by clicking
on the 1/0 Marker icon. Edit the default names to change them to IN_1, IN_2 and OUT _1
respectively. Save your design and go to “Tools” and “Check Schematic” to verify your
design. If there are no errors, you can go on to the next step. Your design should look as
in Figure 5. Print out the window with your schematic.

‘ IN_1 ~,
BUF | OUT 1 S

‘ IN_2 / | BUF
BUF AND2

Figure 5: AND Logic Design.

Modeling the Design

We must now model the design, in order to see that it satisfies our design goals. Select
the “Behavioral Simulation” tab for “Sources”, click on the .sch file and in “Processes”
create “New Source”, “Test-bench Waveform” and give it some appropriate name. In the
“Timing Window” of Figure 6, select “Combinatorial” for the clocks and leave
everything else as it is. The next window, shown in Figure 7, gives you the opportunity of
setting a train of input pulses to test your logic design. Note that the two inputs should be
chosen to exhaust all possible ways of feeding the circuit. Save your file and go back to
the Sources window with the “Behavioral Simulation” tab depressed.

Under processes select “Xilinx ISESimulator”, double click on “Simulate
Behavioral Model” and you should be rewarded with a result such as Figure 8. Check the
outcome over to assure yourself that the simulation indeed represents what you expect
from your circuit, i.e. AND gate. Print out the window with results of your simulation.

Assigning Pins

Next we must assign pins to our device. Checking the D101 Manual, we note on
p.2 that the eight LED drive signals are active high. Correspondingly we will attach the
output of our AND to the drive signal of LED 1. On p. 4 we note that activating a
pushbutton connects its output to Vdd or logic high. Thus we will want to tie our inputs
to the outputs of pushbuttons 1 and 2. Next we check the D101/D2XL pin correspondence
chart and note that LD1 is connected to FPGA pin 93 and that BTN1 and BTN2 are
connected to pins 84 and 85. In order to implement the needed connections, select the
.sch file in the “Sources” window with tab set to “Synthesis/Implementation” and double
click on “Assign Package Pins” in the “Processes” window under “User Constraints”.
Answer “Yes” that you do want to create an .ucf file. In the .ucf file, enter p84, p85 and
p93 in the “Loc” column for 1/O components “In_1", “In_2” and “Out_1" respectively
and then save the file choosing “Synplify Verilog Default: []” as the bus delimiter.

Implementing the Design

Select the .sch file in the “Sources” window. Then under the “Processes” tab go
to “Generate programming” and double click “Configure Device [iMPACT]” to generate
the appropriate files and download them to the FPGA. Follow the same steps you did in

E= Initial Timing and Clock Wizard - Initialize Timing ==

Assign Check Assign
Inputs Outputs Inputs

Wait To Wait To
® Check ™™ Assign -

Clack Timinig [nformatior Clock [nformation

Inputz are aszigned at “lnput Setup Time'" and () Single Clock | IM_1
outputs are checked at "Output Y alid Delap",

() Multiple Clocks

Rizing Edge Falling Edge
Dual Edge (DDA o DET) (%) Combinatorial [or internal clock)
Clock High Time |'I a0 | nz Combinatonal Timing Information
Bz L T |-| on | P |nputs are azzigned, outputz are decoded then
checked. A delay between inputs and outputs avoids
[nput Setup Time |'I 5 | nz azzignment/checking conflicts.
Dutput b alid Delay |‘|5 | hz Check Outputs hz After Inputs are Azzigned
Offsat ||:| | . Azzign Inputs nz After Dutputs are Checked
Global Signals
Iritial Length of Test Bench: |'IEIEIEI | hz
[] PRLD [CPLD] [] G5SR [FPGA]
Time Scale: | iz V|
High for Iritial: 100 | ns

Add Asynchronous Signal Suppart

< Back [Einizh] ’ Cancel l

Figure 6: Timing choices for ISE simulator.

the initial tests of the boards. Ignore any warnings about clocks. You should once again
see “Programming Succeeded” as an indication that no errors were found in your design
and that the download was successfully accomplished.

Testing the Design

Manually verify that BTN1 and BTNZ2 are inputs to an AND circuit whose result
is displayed in LD1.

EBX

EE Xilinx - ISE - C:\Double_andWDouble_and.ise - [test_schem. tbw]

[2] File Edt View Project Source Process TestBench Simulation Window Help LIE) (=)
DPEHS L:idBX Do PPEXE R (A mEOEFNR
00 @ ViV iERTE BAALHL: OO
= 2 YO /OA BT H F AARR
P »Z (1000 wins v
_ Ex
Sarpes)| Behey ceat Sndlslin F0d Tens: 50 150 250 350 450 550 650 750 650 9§D
& Double_and 1000 ns ER RN
i el P e el L |
= gchﬂU&q‘lM M|N_1 0 |
[#)test_schem [test_schem thw) AN in_2 5 _‘_I_I_l_l
MouT_1 1}
|E*|:Sou1ce |ﬁ9 Snapshi| [P Libraiie i - Symbe.
Hierarchy of test_schem:
¥ scum_schem
< i S |) 3 R0 =
Hierarchy - test_sct | =i
@{;‘F‘mcesm |E ierarchy - test_ ‘| D) scum_ sch | Design Summary | [test_schem.tbw
Entity <scum schem> compiled. B . - Lo
Entity <scum_schem> (Architecture <BEHAVIORAL>) compiled.
~
]E_] Console |°Erlo.rs | A\ Warnings ET:\SheII |98 Find in Files i
Time: -

Figure 7: Simulation logic train.

E Xilinx - ISE - C:\Double_and\Double_and.ise - [Simulation]

File Edit Wiew Project Source Process Test Bench Simulation Window Help (=[5 3]
DRHS L i%DOX e QiPAXKS B N BEOD AN
0 (o8 vV iEEE AR OD

S NO SOA RS S F AAA R
b pZ [1000 ¥ins W

Sources x
b

Now:
1000 ns

TR
BN
I |

< L i

Sources for: | Behavioral Simulation
',:;,j Double_and
= £75 ve2a30-hhgl 44
= test_schem [kest_schemn. thw)
@ UUT - zoum_schem [scum_sch

200 400 300 200 1000

< *
N3 Source 51 Snapshy @ Librari | =2- Symbic
I Proc

Proceszses far: test_schem
Add Exizting Source
Create Mew Source
Wiew Generated Test Bench Az HDL
Add Test Bench To Project
#ilins 15E Simulator
[5 Simulate Behavioral Madel
D Generate Self-Checking Tes

0% 00

< 2 |
Processes Sim Hierarchy - tesl . . .

E‘_t D @ zoum_zchem. zch i Design Summary D test_schem. thw D Simulation
Fimulator is doing circuit initialization process. b
Finished circuit initislization process.

5
w

[§] Conzale | @pEmars | Wamings | (G TclShell | (g Findin Fies [&5] Sim Consale - test_schem

Time: 6635.4 ns

Figure 8: The Test-Bench with input and output logic levels.

Design Project Il

Following analogous procedure as above, implement, simulate, download and test
the circuit in Figure 9, which creates a NOR gate from 4 NAND’s. Note that wires can
be connected to each other, but only one wire can be connected to a pin. Finish the
circuit by adding input and output (1/O) buffers and giving appropriate labels to the 1/0

10

lines. You can once again use BTN1 and BTN2 for inputs and LD1 for the output. Verify
that the truth table for a two-input NOR gate is satisfied.

=

MNANDZ

e] e

MANDZ NANDZ

] e

MNANDZ

Figure 9: A two-input NOR circuit constructed from NAND's.

Design Project Il

One of the huge advantages of this form of design is that macros of arbitrary
complexity can be constructed, stored and reused in future designs. Our collection of
symbols contains many such macros. For our next design, we will use one of them,
CBA4RE, a 4 Bit Cascadable Binary Counter with Clock Enable and Synchronous Clear,
to construct a counter that will count from 0 to 5, then reset and continue counting. We
will save our design as a new macro to be used in our next experiment. The design in
Figure 10 is an implementation of such a counter.

Write down a truth table for this counter using values for the clock (clk), counter
enable (cen), clear (clr) and sufficient number of clock cycles to show the full, repetitive
operation of the counter. What is meant by “synchronous clear”? You may wish to
consult the “Symbol Info” tab for the CB4RE counter.

A new wrinkle in this design is the presence of a bus which is a collection of
individual signals. It is automatically created when a wire, drawn with the wiring tool, is
labeled as a vector e.g. btout(3:0). Individual elements of the bus are selected via bus taps
with their names specified by using the netname tool. In our case these names are
btout(0) to btout(3). You may need to use the “Rotate” command located in the “Edit”
menu to orient the bus tabs properly.

Create the schematic entry in Figure 10; check for errors and save the file. The
device that we wish to build will have 3 inputs marked ce for Clock Enable, clr for Clear
and clk for Clock. Outputs will consist of a bus 4-bits wide, btout(3:0). Start a new
project with schematic entry at the highest level. Enter your design in the now usual
fashion naming the inputs ce, clk and clr. To generate a bus for output, draw a line using
the wiring tool and give it a name btout(3:0). The program will change the line into a
thicker bus-line in accordance with the name. Attach the bus taps to the bus. For that,

11

click on the “Add Bus Tap” icon, possibly correct your tap’s orientation with the
“Rotate” icon, and then click on the tap attached to the cursor when close to the bus line.
Depending on program settings, the taps may be named automatically, in the order they
are added, as btout(0), ..., btout(3). Otherwise, you may need to name the bus tap within
its Object Properties. There should be two names there, vector for the bus as a whole and
scalar name for the tap. You only need to change the scalar name. That will also become
the name for any attached wire. Another way to add the bus taps is to click, after the
“Add Bus Tap” icon, onto the pins of the component that needs to be connected to the
bus, as in adding I/O markers. However, there is even less control then on tap addition
than in the procedure above. In any case, you need to end up with the named connections
to the bus, such as btout(0) to btout(3). Names can be also changed using “net name”
under the “Add” menu. Be sure to click directly on the wire for chosen name to apply.
You can use the “increase the name” feature to ease the amount of typing. An output
marker needs to be attached to the bus.

Be sure to save your design and to check for errors. Most often the errors are in
poorly connected wires such as to the bus taps. Within the schematic, individual wires
can be clicked on to highlight the connections and find the names assigned to the
connections that may be mentioned in error messages. If no errors are found, go back to
“Project” and create a new source of type “Testbench Waveform” using a single clock.
Provide changes in the logic states of “ce” and “clr” to fully test your design. Save this

. B dp3ctr.sch El@

File Edit View Add Tools Window

HL YERwnedh POXXAIRR Ul 2-5 N0/ OARBA 7 Abam

L RN e N el

R e L

'ZZZZ@Z g

Figure 10: A 0 to 5 counter.

12

file and go to “Simulate Behavioral Model”. Verify that your logic is working properly
by examining the outputs on the “Wave” plot below (Figure 11). You may have to
extend the simulation time to see a full clock cycle. In the toolbar, make sure the
simulation ran for at least 10000ns. If not, modify it on the drop down menu in the
toolbar and hit the “run for specified time” under the “Simulation” menu. Note that the
“btout” bus is given numerically after each clock transition and that it can be expanded to
look at the individual bit states as well. Does the output agree with your expected Truth
Table? Print the window with sample results of your simulation.

Next select your .sch file in “Sources”. Print the window with the schematic.
Double click “Create Schematic Symbol” in “Processes” under “Design Utilities”. In
your schematic entry page, verify that the new symbol is available for future use. It
should carry the name of your schematic file.

Design Project IV

Today’s lab is the introductory part of a two lab series that will result in the
construction of a counter to count from 0 to 60 with the counts displayed on our 7-
segment displays. If you have arrived this far, with time remaining, you may wish to
continue with next week’s lab and construct the 0 to 60 counter that is at the heart of our
stopwatch design.

13

E= Xilinx - ISE - C:\Counter_to_5\Counter_to_5.ise [Simulation]

[File Edit Yiew Project =W Process TestBench Simulation ‘Window Help =115 (]
DFEHS LR B NiPLHHKS R A BE DD, m.m SR

B @ BULLL GO in P - -3 NO /OA BRI M F Abm=

war § g @0 Gz b X [0 v wEq ;":;"'/C%'%%@ﬂ

Sourcey Behavioral Simulation v

1000
"?f;j Counter_to_&

= £15 #c2530-5tg1 44
= count_th [count_th.tby
@ UUT - Count_sche

< 4

I
Hierarchy of count_th: a
&btout [30]
= #UUT - Count_sche
ce
ek

el
axbtout [=0]
ylklxn_‘l
ylklxn_él
ylklxn_ﬁ
Ml 14
Milen 15

i btout_ dumm_l,l [

2f Processes [Sim Hierarch

@ Count_schem.sch 3 Design Summary D count_th.tbw D Simulation Count_schem. vhf

b4 restart s
P run 10000 ns

Simulator is doing circuit initialization process.

Finished circuit initialization process.

%

|§J Conzole @ Erars X, Warrings @ Tel Shell |4 Find in Files D Sim Congole - count_th

Time: ---

Figure 11: Testbench Waveforms for 0 to 5 Counter.

14

