Homework Set \#1 due Wed Jan 18
/1/ (a) First, determine the electric field due to a uniformly charged sphere (charge Q and radius a) centered at the origin. (b) Sketch a graph of $E_{r}(r)$ versus r. (c) Calculate $\cdot \nabla \cdot E$.
/2/ Consider a point dipole located at the origin. The dipole moment is $p \hat{\mathbf{k}}$. The electrostatic potential is $V(r, \theta)=p \cos \theta /\left(4 \pi \varepsilon_{0} r^{2}\right)$.
(a) Calculate the electric field as a function of position $\overrightarrow{\mathbf{X}}$ and express the result in polar coordinates.
(b) Calculate $\boldsymbol{\nabla} \mathbf{E}$.
/3/Consider a small current element I dl located at the origin. The magnitude of $\mathbf{d l}$ is δ and the direction is $\hat{\mathbf{k}}$; so $\mathbf{d} \mathbf{l}=\delta \hat{\mathbf{k}}$. The magnetic field at $\overrightarrow{\mathbf{X}}$ due to the current element is

$$
\delta \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{x}})=\frac{\mu_{O} \mathrm{I} \delta}{4 \pi} \frac{\hat{\mathbf{k}} \times \hat{\mathbf{r}}}{\mathbf{r}^{2}}
$$

(Biot Savart)
(a) Calculate the curl of $\delta \mathbf{B}(\mathbf{x})$.
(b) Calculate the divergence of $\delta \mathrm{B}(\mathbf{x})$.
/4/ Consider a uniformly polarized dielectric sphere with radius a. The polarization field is $\mathbf{P}(\mathbf{x})=\mathbf{P} \hat{\mathbf{k}}$ for $\mathrm{r} \leq \mathrm{a}$.
(a) Sketch the electric field lines, both inside and outside the sphere. Your sketch should be qualitatively accurate and include the directions.
(b) Let $E_{r}(r, \theta)$ be the r-component of \mathbf{E} at position (r, θ, ϕ). From the fields calculate the discontinuity,

$$
g(\theta)=\lim _{\varepsilon \rightarrow O}\left[E_{r}(a+\varepsilon, \theta)-E_{r}(a-\varepsilon, \theta)\right]
$$

(c) Compare $g(\theta)$ and $\sigma_{B}(\theta)$ (= the surface charge density).

