Homework Set #1 due Wed Jan 18

/1/ (a) First, determine the electric field due to a uniformly charged sphere (charge Q and radius a) centered at the origin. (b) Sketch a graph of $E_r(r)$ versus r. (c) Calculate $\cdot \nabla \cdot E$.

/2/ Consider a point dipole located at the origin. The dipole moment is **pk**. The electrostatic potential is V(r, θ)=p cos θ /(4 $\pi \epsilon_0 r^2$).

(a) Calculate the electric field as a function of position $\vec{\mathbf{X}}$ and express the result in polar coordinates.

(b) Calculate **∇** E.

/3/Consider a small current element I **dl** located at the origin. The magnitude of **dl** is δ and the direction is $\hat{\mathbf{k}}$; so $\mathbf{dl} = \delta \hat{\mathbf{k}}$. The magnetic field at $\vec{\mathbf{x}}$ due to the current element is

$$\delta \vec{\mathbf{B}}(\vec{\mathbf{x}}) = \frac{\mu_0 l \delta}{4\pi} \frac{\hat{\mathbf{k}} \times \hat{\mathbf{r}}}{r^2}$$
 (Biot Savart)

(a) Calculate the curl of $\delta \textbf{B(x)}.$

(b) Calculate the divergence of $\delta B(x)$.

/4/ Consider a uniformly polarized dielectric sphere with radius a. The

polarization field is $\mathbf{P}(\mathbf{x}) = \mathbf{P} \ \hat{\mathbf{k}}$ for $r \leq a$.

(a) Sketch the *electric field lines*, both inside and outside the sphere. Your sketch should be qualitatively accurate and include the directions.

(b) Let $E_r(r,\theta)$ be the r-component of **E** at position (r,θ,φ) . From the fields calculate the discontinuity,

$$\mathbf{g}(\theta) = \lim_{\varepsilon \to O} \left[\mathbf{E}_{\mathbf{r}} (\mathbf{a} + \varepsilon, \theta) - \mathbf{E}_{\mathbf{r}} (\mathbf{a} - \varepsilon, \theta) \right]$$

(c) Compare g(θ) and $\sigma_B(\theta)$ (= the surface charge density).