Special Relativity (Einstein, 1905)
(1) We can use any inertial coordinate system.
(2) The equations of physics are covariant --- they take the same form for all inertial frames.
(3) For example, the equations of electromagnetism:
Maxwell's equations

$$
\begin{aligned}
& \partial_{\mathrm{v}} \mathrm{Fv}^{\mathrm{u}}=\mu_{0} \mathrm{~J}^{\mathrm{u}} \\
& \partial_{\mathrm{v}} \mathrm{G}^{\mathrm{uv}}=0 \text { where } \mathrm{G}^{\mathrm{uv}}=1 / 2 \varepsilon^{\mathrm{uvp} o} \mathrm{~F}_{\mathrm{po}}
\end{aligned}
$$

Conservation of energy and momentum:

$$
\begin{aligned}
& \mu_{0} T^{\mu v}=F^{\mu \rho} F^{v}{ }_{\rho}-1 / 4 \eta^{\mu v} F^{\rho \sigma} F_{\rho \sigma} \\
& \partial_{v} T^{\mu v}=-F^{\mu \rho} J_{\rho} .
\end{aligned}
$$

(4) The metric tensor is "euclidean"

$$
\eta_{\mathrm{uv}}=\left|\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|
$$

General Relativity (Einstein, 1916)
(1) We can use any coordinate system.
(2) The equations of physics are covariant --- they take the same form for all coordinate systems.
(3) The metric tensor, $g_{\mu v}(\underline{x})$, may be noneuclidean.
(4) Gravity is curvature.
(5) The Einstein field equation

$$
R^{\mu v}-1 / 2 g^{\mu v} g_{a \beta} R^{\alpha \beta}=\left(8 \pi G / c^{4}\right) T^{\mu v}
$$

$\mathrm{R}^{\mu \mathrm{v}}=$ Ricci curvature tensor
$\mathrm{T}^{\mathrm{uv}}=$ stress energy tensor of the
gravitational source

The motion of particles in free fall

("Free fall" means that the only force on the particle is gravity.)
Postulate: The particle moves on a geodesic curve.
The geodesic equation is

$$
\frac{d^{2} x^{\mu}}{d \tau^{2}}=-\Gamma_{\rho \sigma}^{\mu} \frac{d x^{\rho}}{d \tau} \frac{d x^{\sigma}}{d \tau}
$$

$\Gamma^{\mu}{ }_{\rho \sigma}=$ the Christoffel symbols; $\Gamma^{\mu}{ }_{\rho \sigma}=\Gamma^{\mu}{ }_{\sigma \rho}$
A light ray moves on a null geodesic.

The purpose of today's lecture: derive the geodesic equation.

The light cone

Picture of a local inertial frame of reference...

A massive particle can only move inside the forward light cone. For example, a free particle has v < c.
A light ray (wave packet or photon) moves on the forward light cone; $|\delta x| / \delta t=c$.

Particle in free fall in G. R.

The proper time for the particle to move from A to B along a curve Γ is

Parametrize the curve by some parameter σ; i.e., $\mathrm{x}^{\mathrm{H}}=\mathrm{x}^{\mathrm{H}}(\sigma)$ are the points on the curve; $\sigma=0$ is A and $\sigma=1$ is B. Then

$$
c \tau(r)=\int_{0}^{1} \sqrt{-\operatorname{gnn}^{2}(x) \frac{d x}{d \sigma} \frac{d x^{2}}{d \sigma^{2}}}
$$

Definition: The geodesic curve from A to B is the curve with minimum proper time.

Let $x^{\mu}(\sigma)$ be the geodesic curve from A to B; then consider infinitesimal changes of the curve, x^{μ} $(\sigma) \rightarrow x^{\mu}(\sigma)+\delta x^{\mu}(\sigma)$. We must have $\delta \tau=0$ for any change $\delta x^{\mu}(\sigma)$.
Definition. For a geodesic curve $\Gamma, \delta \tau=0$ for any change of Γ (with endpoints fixed).

Analogy to classical mechanics - the Euler Lagrange equation
$S=\int_{a}^{b} L(d x / d t, x) d t$
(action and lagrangian)
$\delta S=0$
$\Rightarrow \mathrm{d} / \mathrm{dt}\left(\partial \mathrm{L} / \partial \mathrm{x}^{\prime}\right)-\partial \mathrm{L} / \partial \mathrm{x}=0$
(Lagrange's equation)

Replace t by σ; replace $x(t)$ by $x^{a}(\sigma)$.

$$
\begin{aligned}
& \text { We have } \\
& \qquad L\left(\frac{d x^{\mu}}{d \sigma}, x^{\mu}\right)=\sqrt{-g_{\mu v}(x) \frac{d x^{\alpha}}{d \sigma} \frac{d x^{v}}{d \sigma^{2}}} \\
& \text { so } \delta \sigma=0 \quad \text { implics } \\
& \quad \frac{d}{d \sigma}\left(\frac{\partial L}{\partial \dot{x}^{\alpha}}\right)-\frac{\partial L}{\partial x^{\alpha}}=0 \quad \dot{x}^{\alpha} \equiv \frac{d x^{\alpha}}{d \sigma}
\end{aligned}
$$

Calculations - be very careful about the indices!

$$
L=\sqrt{-g_{\mu \nu}(x) \dot{x}^{\mu} \dot{x}^{v}}=\sqrt{-g \dot{x} \dot{x}}
$$

(1)

$$
\begin{aligned}
& \frac{\partial L}{\partial x^{\alpha}}=\frac{1}{2}(-g \dot{x} \dot{x})^{-1 / 2}(-) \frac{\partial g_{\mu \nu} \alpha^{\mu}}{\partial x^{\alpha}} \dot{x}^{\nu} \\
& \text { Note: cdt }=\sqrt{-g \dot{x} \dot{x}} d \sigma \\
& \text { So } \sqrt{-g \dot{x} \bar{x}}=c \frac{d \tau}{d \sigma} \\
& \frac{\partial L}{\partial x^{\alpha}}=-\frac{1}{2 c} \frac{\partial g_{\mu v}}{\partial x^{\alpha}} \frac{d \sigma}{d \tau} \frac{d x^{\mu}}{d \sigma} \frac{d x^{2}}{d \sigma} \\
& =\frac{-1}{2 c} \quad \frac{\partial g \mu y}{\partial x^{2}} \quad \frac{d x^{n} \pi}{d \tau} \frac{d x^{v} v}{d \tau} \frac{d \tau}{d \sigma}
\end{aligned}
$$

We first used σ to parametrize points along the curve; but now we'll use $\underline{\underline{\tau}}$ (proper time) to parametrize the curve.

$$
\begin{aligned}
& \text { (2.) } \frac{\partial L}{\partial \dot{x}^{\alpha}}=\frac{1}{2}(-g \dot{x} \dot{x})^{-1 / 2} \\
&=-\left\{g_{\alpha \nu} \dot{x}_{\text {equal }}^{\nu}+g_{\mu \alpha} \dot{x}_{\mu}^{\mu}\right\} \\
&=-g_{\alpha \nu} \frac{d x^{v}}{d \sigma} \frac{d \sigma}{d \tau} \\
&=-\frac{1}{c} g_{\alpha \nu} \frac{d x^{\nu}}{d \tau}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \frac{d}{d \sigma}\left(\frac{\partial L}{\partial \dot{x}^{*}}\right)=\frac{d \tau}{d \sigma} \frac{d}{d \tau}\left(-\frac{1}{c} g_{\alpha v}(x) \frac{d x^{v}}{d \tau}\right) \\
& =\frac{-1}{c} \frac{d \tau}{d \sigma}\left\{\frac{\partial g_{\alpha v}}{\partial x^{u}} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}+g_{\alpha \nu(x)} \frac{d^{2} x^{v}}{d \tau^{2}}\right\}
\end{aligned}
$$

(4) (3) - (1) \Rightarrow

Notation for raising and lowering indices:
The metric tensor is g_{uv} :
The inverse of the metric tensor is $\mathrm{g}^{\mathrm{\mu v}}$.
That is, $\mathrm{g}^{\mathrm{\mu a}} \mathrm{~g}_{\mathrm{av}}=\delta_{\mathrm{pv}}$.
Now multiply both sides of the equation by $\mathrm{g}^{\text {na }}$.

$$
g_{\alpha \nu} \frac{d^{2} x^{v}}{d \tau^{2}}=\frac{-1}{2}\left(\frac{\partial g_{\alpha y}}{\partial x^{\mu}}+\frac{\partial g_{\alpha \mu}}{\partial x^{v}}-\frac{\partial g_{\mu v}}{\partial x^{\alpha}}\right) \frac{d x^{\mu}}{d c} \frac{d x^{v}}{d \tau}
$$

Geodesic equation

$$
\frac{d^{2} x^{\mu}}{d c^{2}}=\Gamma^{\mu}=\frac{d x^{\rho}}{d \tau} \frac{d x^{\sigma}}{d c^{\sigma}}
$$

The Christoffel symbols

$$
\Gamma_{\rho \sigma}^{\mu}=\frac{1}{2} g^{\mu \alpha}\left(\frac{\partial g \alpha \rho}{\partial x^{\sigma}}+\frac{\partial g_{\alpha \sigma}}{\partial x^{\rho}}-\frac{\partial g_{\rho \sigma}}{\partial x^{\alpha}}\right)
$$

Corollary.

If there is no gravity then the particle moves on a straight line. (Or, for a euclidean space, the geodesics are straight lines.)

$$
\frac{d^{2} x^{\mu}}{d \tau^{2}}=-\frac{1}{2} g^{\mu \alpha}\left(\frac{\partial g_{\alpha \rho}}{\partial x^{\sigma}}+\frac{\partial g_{\alpha \sigma}}{\partial x^{\rho}}-\frac{\partial g_{\rho \sigma}}{\partial x^{\alpha}}\right) \frac{d x^{\rho}}{d \tau} \frac{d x^{\sigma}}{d \tau}
$$

Proof.

If there is no gravity then the coordinate system is an inertial frame of reference:
$g_{\mu \nu}=\eta_{\mu \nu} \quad$ and $\quad \Gamma_{\rho \sigma}^{\mu}=0$
$\mathrm{d}^{2} \mathrm{X}^{\mu} / \mathrm{d} \tau^{2}=0 \quad$ and $\quad \mathrm{dx}^{\mu} / \mathrm{d} \tau=\kappa^{\mu}$ (constant)
Note that $-g_{\mu \nu} \mathrm{dx}^{\mu} \mathrm{dx}^{\nu}=\mathrm{c}^{2}(\mathrm{~d} \tau)^{2}$ (proper time)
$-\eta_{\mu v} \mathrm{dx}^{\mu} \mathrm{dx}=\left\{\left(\kappa^{0}\right)^{2}-\kappa^{2}\right\}(\mathrm{d} \tau)^{2}=\mathrm{c}^{2}(\mathrm{~d} \tau)^{2}$
so $\left(\kappa^{0}\right)^{2}-\kappa^{2}=c^{2}$.
Thus the velocity is constant, and less than c.
(Exercise: calculate dx/dt.)

Next time:
The metric tensor for spacetime outside a spherical mass is the Schwarzschild metric.

How does a light ray move in the neighborhood of a spherical mass?
$>$ deflection of light by the sun; an important historical test of the theory of general relativity.
$>$ light cannot escape from a black hole if it comes too close (classically)

