Special Relativity (Einstein, 1905) (1) We can use any inertial coordinate system.

(2) The equations of physics are covariant --- they take the same form for all inertial frames.
(3) For example, the equations of electromagnetism:

Maxwell's equations

 $\begin{array}{l} \partial_{v} F^{\mu v} = \mu_{0} J^{\mu} \\ \partial_{v} G^{\mu v} = 0 \text{ where } G^{\mu v} = \frac{1}{2} \epsilon^{\mu v \rho \sigma} F_{\rho \sigma} \\ \text{Conservation of energy and momentum:} \\ \mu_{0} T^{\mu v} = F^{\mu \rho} F^{v}{}_{\rho} - \frac{1}{4} \eta^{\mu v} F^{\rho \sigma} F_{\rho \sigma} \\ \partial_{v} T^{\mu v} = -F^{\mu \rho} J_{\rho} \\ \text{(4) The metric tensor is "euclidean"} \\ \eta_{\mu v} = \begin{vmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$

General Relativity (Einstein, 1916) (1) We can use any coordinate system. (2) The equations of physics are covariant --- they take the same form for all coordinate systems. (3) The metric tensor, $g_{\mu\nu}(\underline{x})$, may be noneuclidean. (4) Gravity is curvature. (5) The Einstein field equation $R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} g_{\alpha\beta} R^{\alpha\beta} = (8\pi G/c^4) T^{\mu\nu}$ $R^{\mu\nu}$ = Ricci curvature tensor $T^{\mu\nu}$ = stress energy tensor of the gravitational source

The motion of particles in free fall ("Free fall" means that the only force on the particle is gravity.) Postulate: The particle moves on a geodesic curve. The geodesic equation is

$$\frac{d^2 \chi^{M}}{d\tau^2} = - \int_{g\sigma}^{M} \frac{dx^g}{d\tau} \frac{dx^{\sigma}}{d\tau}$$

 $\Gamma^{\mu}_{\rho\sigma}$ = the Christoffel symbols; $\Gamma^{\mu}_{\rho\sigma}$ = $\Gamma^{\mu}_{\sigma\rho}$

A light ray moves on a <u>**null**</u> geodesic.

The purpose of today's lecture: derive the geodesic equation.

<u>The light cone</u> Picture of a local inertial frame of reference...

A massive particle can only move inside the forward light cone. For example, a free particle has v < c.

A light ray (wave packet or photon) moves on the forward light cone; $|\delta \mathbf{x}| / \delta t = c.$

Particle in free fall in G. R.

The proper time for the particle to move from A to B along a curve Γ is

$$\int G^{*} = \int G d\tau = \int \sqrt{-\frac{1}{2}} dx^{*} dx^{*}$$

Parametrize the curve by some parameter σ ; i.e., $x^{\mu} = x^{\mu}(\sigma)$ are the points on the curve; $\sigma = 0$ is A and $\sigma = 1$ is B. Then

$$cT(\Gamma) = \int \sqrt{-g_{\mu\nu}(x)} \frac{dx^{\mu}}{d\sigma} \frac{dx^{\nu}}{d\sigma} d\sigma$$

Definition: The *geodesic* curve from A to B is the curve with minimum proper time.

Let $x^{\mu}(\sigma)$ be the geodesic curve from A to B; then consider infinitesimal changes of the curve, $x^{\mu}(\sigma) \rightarrow x^{\mu}(\sigma) + \delta x^{\mu}(\sigma)$. We must have $\delta \tau = 0$ for any change $\delta x^{\mu}(\sigma)$.

<u>Definition</u>. For a geodesic curve Γ , $\delta \tau = 0$ for any change of Γ (with endpoints fixed).

Analogy to classical mechanics - the Euler Lagrange equation $S = \int_{a}^{b} L(dx/dt, x) dt$ (action and lagrangian) $\delta S = 0$ $\Rightarrow d/dt (\partial L/\partial x') - \partial L/\partial x = 0$ (Lagrange's equation)

Replace t by σ ; replace x(t) by $x^{\alpha}(\sigma)$.

We have

$$L\left(\frac{dx^{n}}{d\sigma}, x^{n}\right) = \sqrt{-g_{nv}(x)} \frac{dx^{n}}{d\sigma} \frac{dx^{v}}{d\sigma}$$
so $\delta \mathcal{T} = 0$ simplies
 $\frac{d}{d\sigma} \left(\frac{\partial L}{\partial \dot{x}^{\alpha}}\right) - \frac{\partial L}{\partial x^{\alpha}} = 0$ $\dot{x}^{\alpha} \equiv \frac{dx^{\alpha}}{d\sigma}$
 $- \frac{\partial L}{\partial x^{\alpha}} = 0$ $\dot{x}^{\alpha} = \frac{dx^{\alpha}}{d\sigma}$

<u>Calculations - be very careful about the</u> <u>indices!</u>

$$L = \sqrt{-g_{MV}(x)} \hat{x}^{M} \hat{x}^{V} = M \sqrt{g} \hat{x} \hat{z}$$

We first used σ to parametrize points along the curve; but now we'll use $\underline{\mathbf{r}}$ (proper time) to parametrize the curve.

(2)
$$\frac{\partial L}{\partial x^{\alpha}} = \frac{1}{2} (-g \dot{x} \dot{x})^{-k_{2}} (-) \left\{ g_{\alpha \nu} \dot{x}^{\nu} + g_{\alpha \alpha} \dot{x}^{\alpha} \right\}$$

= $-g_{\alpha \nu} \frac{dx^{\nu}}{d\sigma} \frac{d\sigma}{cd\tau}$
= $-\frac{1}{c} \int_{\alpha \nu} \frac{dx^{\nu}}{d\tau}$
(3) $\frac{d}{d\sigma} \left(\frac{\partial L}{\partial \dot{x}^{\alpha}} \right) = \frac{d\tau}{d\sigma} \frac{d}{d\tau} \left(-\frac{1}{c} g_{\alpha \nu} (x) \frac{dx^{\nu}}{d\tau} \right)$
= $\frac{-1}{c} \frac{d\tau}{d\sigma} \left\{ \frac{\partial g_{\alpha \nu}}{\partial x^{\alpha}} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\nu}}{d\tau} + g_{\alpha \nu} (x) \frac{d^{2}x^{\nu}}{d\tau^{2}} \right\}$
(4) (3) = (1) =>
 $g_{\alpha \nu} \frac{d^{2}x^{\nu}}{d\tau^{2}} + \frac{\partial g_{\alpha \nu}}{\partial x^{\alpha}} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\nu}}{d\tau} = \frac{1}{2} \frac{\partial g_{\alpha \nu}}{\partial x^{\alpha}} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\nu}}{d\tau}$
 $I = \frac{1}{c} \frac{d\tau}{d\tau} \left\{ \frac{\partial g_{\alpha \nu}}{\partial x^{\alpha}} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\nu}}{d\tau} + \frac{1}{2} \frac{\partial g_{\alpha \nu}}{\partial x^{\alpha}} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\nu}}{d\tau} \right\}$
Notation for raising and lowering indices:
The metric tensor is q

The metric tensor is $g_{\mu\nu}$. The inverse of the metric tensor is $g^{\mu\nu}$. That is, $g^{\mu\alpha} g_{\alpha\nu} = \delta_{\mu\nu}$. Now multiply both sides of the equation by $g^{\mu\alpha}$.

$$\frac{d^{2}x^{\mu}}{dt^{2}} = -\frac{1}{2} \left(\frac{\partial q_{\alpha r}}{\partial x^{\mu}} + \frac{\partial q_{\alpha r}}{\partial x^{\nu}} - \frac{\partial q_{\mu r}}{\partial x^{\mu}} \right) \frac{dx^{\mu}}{dt} \frac{dx^{\nu}}{dt}$$

$$\frac{d^{2}x^{\mu}}{dt^{2}} = -\frac{1}{2} g^{\mu \alpha} \left(\frac{\partial q_{\alpha r}}{\partial x^{\sigma}} + \frac{\partial q_{\alpha \sigma}}{\partial x^{\sigma}} - \frac{\partial q_{\rho \sigma}}{\partial x^{\alpha}} \right) \frac{dx^{\rho}}{dt} \frac{dx^{\sigma}}{dt}$$

Geodesic equation

$$\frac{d^2 x^{\prime\prime\prime}}{d\tau^2} = -\Gamma^{\prime\prime\prime} \frac{dx^8}{g\sigma} \frac{dx^{\sigma}}{d\tau} \frac{dx^{\sigma}}{d\tau}$$

The Christoffel symbols

$$\int \frac{du}{dr} = \frac{1}{2} g^{\mu\nu} \left(\frac{\partial g}{\partial x^{\sigma}} + \frac{\partial g}{\partial x^{\sigma}} - \frac{\partial g}{\partial x^{\sigma}} \right)$$

Corollary.

If there is no gravity then the particle moves on a straight line. (Or, for a euclidean space, the geodesics are straight lines.) **Proof.**

If there is no gravity then the coordinate system is an inertial frame of reference:

$$\begin{split} g_{\mu\nu} &= \eta_{\mu\nu} \quad \text{and} \quad \Gamma^{\mu}_{\ \rho\sigma} = 0 \\ d^2 x^{\mu} / d\tau^2 &= 0 \quad \text{and} \quad dx^{\mu} / d\tau = \kappa^{\mu} \text{ (constant)} \end{split}$$
Note that $-g_{\mu\nu} dx^{\mu} dx^{\nu} = c^2 (d\tau)^2 \text{ (proper time)} \\ -\eta_{\mu\nu} dx^{\mu} dx^{\nu} &= \{ (\kappa^0)^2 - \kappa^2 \} (d\tau)^2 = c^2 (d\tau)^2 \\ \text{so } (\kappa^0)^2 - \kappa^2 = c^2 . \end{split}$

Thus the velocity is constant, and less than c. (Exercise: calculate d**x**/dt.)

Next time:

The metric tensor for spacetime outside a spherical mass is the Schwarzschild metric. How does a light ray move in the neighborhood of a spherical mass?

- deflection of light by the sun; an important historical test of the theory of general relativity.
- light cannot escape from a black hole if it comes too close (classically)