Motion of particles and light rays in the neighborhood of a spherical mass

The Schwarzschild metric

For empty space in the neighborhood of a spherical mass, the invariant distance between two events is

$$
\begin{aligned}
c^{2}(d \tau)^{2} & =\left(1-\frac{2 G M}{c^{2} r}\right)(c d t)^{2} \\
& -\left(1-\frac{2 G M}{c^{2} \gamma}\right)^{-1}(d r)^{2}-r^{2}(d \theta)^{2}-r^{2} \sin ^{2} \theta(d \phi)^{2}
\end{aligned}
$$

($\mathrm{d} \tau=$ proper time for time like separations)
Were using these coordinates: $\{\mathrm{t}, \mathrm{r}, \theta, \varphi\}$
(polar coordinates for the 3D space at a constant time)

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta
\end{aligned}
$$

We're interested in the trajectory for 4D spacetime.

Compare Minkowski space (mass $\mathrm{M}=0$)

$$
\begin{aligned}
& c^{2}(d \tau)^{2}=c^{2}(d t)^{2}-(d x)^{2}-(d y)^{2}-(d z)^{2} \\
& d x=d r \sin \theta \cos \phi+r \cos \theta d \theta \cos \phi-r \sin \theta \sin \phi d \phi \\
& d \varphi=d r \sin \theta \sin \phi+r \cos \theta d \theta \sin \phi+r \sin \theta \cos \phi d \phi \\
& d z=d r \cos \theta-r \sin \theta d \theta
\end{aligned}
$$

$$
c^{2}(d \tau)^{2}=c^{2}(d t)^{2}-(d r)^{2}-r^{2}(d \theta)^{2}-r^{2} \sin ^{2} \theta(d \varphi)^{2}
$$

The Schwarzschild metric tensor

$$
c^{2}(d \tau)^{2}=-g_{\mu v} d x^{\mu} d x^{v}
$$

i.e., $x^{0}=c t ; \quad x^{1}=r ; \quad x^{2}=\theta ; \quad x^{3}=\varphi$.

$$
\Sigma(\mathrm{r})=1-2 \mathrm{GM} / \mathrm{c}^{2} \mathrm{r}
$$

A particle moves on a geodesic; i.e., on a curve Γ such that $\delta \tau=0$ for any change of Γ.
A light ray (wave packet or photon) travels on a null geodesic; i.e., a geodesic with $\tau=0$.

Now we could use the geodesic equation,

but then we would need to calculate the Christoffel symbols
$\Gamma^{\mu} \alpha \beta \quad\{\mu, a, \beta=t, r, \theta, \varphi\}$
Instead, it's easier to go back to first principles. Require $\delta \tau=0$ where

$$
c \tau(F)=\int_{0}^{1} \sqrt{-g_{\mu v} \frac{d x^{a}}{d r}} \frac{d d^{v}}{d r} d \sigma
$$

\Rightarrow the Euler-Lagrange equations

$$
\mathrm{d} / \mathrm{d} \sigma\left(\partial \mathrm{~L} / \partial \xi^{\prime}\right)-\partial \mathrm{L} / \partial \xi=0
$$

for all 4 independent variations $\delta \xi=\delta t, \delta r, \delta \theta, \delta \varphi$

Euler-Lagrange equations
$d / d \sigma\left(\partial L / \partial \xi^{\prime}\right)-\partial L / \partial \xi=0 \quad$ for $\quad \xi=t, r, \theta, \varphi ;$ with $L=\left(-g_{\mu v} x^{\prime \mu} x^{\prime v}\right)^{1 / 2}$ $\left\{\mathrm{x}^{\prime \mu}\right.$ means $\left.\mathrm{dx}^{\mu} / \mathrm{d} \sigma\right\}$
Note:

$$
\begin{aligned}
& C \delta \tau=\sqrt{-g \mu v} \frac{d x^{2}}{d \sigma} \frac{d x}{d s} d \sigma \\
& \sqrt{-g \dot{x}}=c d r / d \sigma
\end{aligned}
$$

Case of $\delta t\left(o r, \delta x^{-0}\right.$ where $\left.x^{-0}=c t\right)$

$$
\begin{aligned}
0 & =\frac{d}{d \sigma}\left(\frac{\partial L}{\partial x^{\circ}}\right)-\frac{\partial L}{\partial x^{0}} \\
& =\frac{d}{d \sigma}\left\{\frac{1}{2}\left(-g x^{\prime} x\right)^{-L_{2}}\left(-g_{00}\right) 2 \frac{d x^{0}}{d \sigma}\right\}-0 \\
& =\frac{d}{d \sigma}\left\{\Sigma(r) \cdot \frac{d t}{d \tau}\right\}
\end{aligned}
$$

Result $\Sigma(r) \frac{d t}{d \tau}=\alpha$, a constant

This constant of the motion is related to energy; the metric is invariant with respect to translations in time.

Case of $\delta \varphi$

$$
\begin{align*}
0 & =\frac{d}{d \sigma}\left(\frac{\partial L}{\partial \dot{\phi}}\right)-\frac{\partial L}{\partial \phi} \\
& =\frac{d}{d \sigma}\left\{\frac{1}{2}\left(-g_{x} \dot{x}\right)^{-r_{2}}\left(-g_{\phi \phi}\right) 2 \frac{d \phi}{d \sigma}\right\}-0 \\
& =\frac{d}{d \sigma}\left\{-r^{2} \sin ^{2}(\theta) \frac{d \phi}{d \tau}\right\} \quad g_{\phi \phi}=r^{2} \sin ^{2} \theta \tag{2}
\end{align*}
$$

Result $r^{2} \sin ^{2} \theta \frac{d \phi}{d \tau}=\lambda$, a constant.
This constant of the motion is related to angular momentum; the metric is invariant with respect to translations in φ.

Case of $\delta \theta$

$$
\begin{aligned}
& O=\frac{d}{d \sigma}\left(\frac{\partial L}{\partial \vec{\theta}}\right)-\frac{\partial L}{\partial \theta} \\
& =\frac{d}{d \sigma}\left\{\frac{1}{2}\left(-g x^{\prime} x^{\prime}\right)^{-1 / 2}(-g \theta \theta) 2 \frac{d \theta}{d \sigma}\right\} \\
& -\frac{1}{2}\left(-g x^{\prime}\right)^{-1 / 2}\left(-\frac{\partial \phi \phi}{\partial \theta}\right)\left(\frac{d \phi}{d \sigma}\right)^{2} \\
& 0=\left(-g x^{\prime}\right)^{1 / 2} \frac{d}{d \tau}\left\{-r^{2} \frac{d \theta}{d \tau}\right\} \\
& +\frac{1}{2}\left(-g x x^{1}\right)^{1 / 2} \cdot 2 r^{2} \sin \theta \cos \theta\left(\frac{d \phi}{d r}\right)^{2} \\
& \theta=\frac{d}{d \tau}\left(-r^{2} \frac{d \theta}{d \tau}\right)+r^{2} \min \theta \cos \theta\left(\frac{d \phi}{d \tau}\right)^{2}
\end{aligned}
$$

We have a solution for this equation.

$$
\theta=\pi / 2
$$

Why?

$$
\begin{align*}
\sum(r) \frac{d t}{d \tau} & =\alpha \tag{1}\\
r^{2} \frac{d \phi}{d \tau} & =\lambda \tag{2}
\end{align*}
$$

Case of δr
We don't need to derive the Euler-Lagrange equation for r; instead, we can just use this:

$$
\begin{aligned}
& c^{2}(d \tau)^{2}=-g_{u v} d x^{\mu} d x^{\gamma}-\frac{g_{r r}=\frac{1}{\Sigma(r)}}{} \\
& =-g_{00}(c d t)^{2}-g_{r r}(d r)^{2}-g_{\theta \theta}(d \theta)^{2}-g_{\phi \phi}(d \phi)^{2} \\
& \left.=c^{2} c^{2}\left(\frac{\alpha d \tau}{\Sigma}\right)^{2}-\frac{j(d r}{2}\right)^{2}-r^{2}(d \theta)^{2}-r^{2} \sin ^{2} \theta\left(\frac{\lambda t}{r^{2}}\right)^{2} \\
& \theta=\pi / 2 ; d \theta=0 \\
& =\frac{\alpha^{2}}{\Sigma} c^{2}(d \tau)^{2}-\frac{(d r)^{2}}{\Sigma}-\frac{\lambda^{2}}{r^{2}}(d \tau)^{2}
\end{aligned}
$$

Result

$$
\begin{equation*}
\left(\frac{d r}{d \tau}\right)^{2}=\left(\alpha^{2}-\Sigma\right) c^{2} \sim \frac{\lambda^{2}}{r^{2}} \Sigma \tag{3}
\end{equation*}
$$

Newtonian mechanics for planetary motion
Energy is conserved and angular momentum is conserved.
Newtonian Mechamis for plareting motion
Energy is conserved,

$$
\frac{1}{2} m r^{2}+\frac{L^{2}}{2 m r^{2}}-\frac{G M m}{r}=E=m \varepsilon ;
$$

and angular momentum is conserved

$$
m r^{2} \frac{d \phi}{d t}=L=m \lambda
$$

So, we have

$$
\dot{r}^{2}=2 \varepsilon-\frac{\lambda^{2}}{r^{2}}+\frac{2 G M}{r}
$$

and $\dot{\phi}^{2}=\left(\frac{\lambda}{r^{2}}\right)^{2}$.
Thus the orbit equation is

$$
\begin{aligned}
& \left(\frac{d r}{d \phi}\right)^{2}=\frac{\dot{r}^{2}}{\dot{\phi}^{2}}=\frac{r^{4}}{\lambda^{2}}\left\{2 \varepsilon-\frac{\lambda^{2}}{r^{2}}+\frac{2 G H}{r}\right\} \\
& \left(\frac{d r}{d \phi}\right)^{2}=\frac{2 \xi}{\lambda^{2}} r^{4}-r^{2}+\frac{2 G M}{\lambda^{2}} r^{3}
\end{aligned}
$$

Compare the orbit equation from Newtonian mechanics, to the orbit equation from General Relativity.
Compare the quatim freon G.R:
let $2 \varepsilon=\left(\alpha^{2}-1\right) c^{2}$. Then for $G R_{1}$,

$$
\left(\frac{d r}{d \phi}\right)^{2}=\frac{2 \varepsilon}{\lambda^{2}} r^{4}+\frac{2 G M}{\lambda^{2}} r^{3}-r^{2}+\frac{2 G M r}{c^{2}}
$$

For Norstainin Mechanics, He olits are conic section (hypatiola, parabola, or delis) The relativity katar bastion $=2 G M \mathrm{Mr} / \mathrm{c}^{2}$.
Einstein's calculation of the precession of the perihelion of mercury, as a test of the theory of general relativity.

Next time: motion of light rays

