
Motion of particles and light rays in the 
neighborhood of a spherical mass

The Schwarzschild metric
For empty space in the neighborhood of a 
spherical mass, the invariant distance between 
two events is

(dτ = proper time for time like separations)
We’re using these coordinates: {t, r, θ,  φ} 
(polar coordinates for the 3D space at a constant time)

We’re interested in the trajectory for 4D 
spacetime.

Compare Minkowski space (mass M = 0)

c2(dτ)2 = c2(dt)2  − (dx)2 − (dy)2 − (dz)2

c2(dτ)2 = c2(dt)2  − (dr)2 − r2(dθ)2 − r2 sin2θ(dφ)2



The Schwarzschild metric tensor

c2(dτ)2 = − gμν dxμ dxν

i.e., x0 = ct;   x1 = r;   x2 = θ;   x3 = φ .

Σ(r) = 1 - 2GM/c2r

A particle moves on a geodesic; i.e., on a curve 
Γ such that δτ = 0 for any change of Γ.
A light ray (wave packet or photon) travels on 
a null geodesic; i.e., a geodesic with τ = 0.

Now we could use the geodesic equation,

but then we would need to calculate the 
Christoffel symbols
Γμαβ         {  μ, α, β  = t,  r,  θ,  φ}
Instead, it’s easier to go back to first 
principles. Require δτ = 0 where

⇒  the Euler-Lagrange equations
d/dσ (∂L/∂ξ’) − ∂L/ ∂ξ = 0   

for all 4 independent variations δξ =  δt,  δr,  δθ,  δφ .



Euler-Lagrange equations
d/dσ (∂L/∂ξ’) − ∂L/ ∂ξ = 0      for     ξ = t,  r,  θ,  φ;
with     L = ( −gμν x’μ x’ν ) 1/2       

{ x’μ means dxμ /dσ }
Note:

Case of δt (or, δx0 where x0 = ct)

This constant of the motion is related to energy;  
the metric is invariant with respect to 
translations in time.

Case of δφ

This constant of the motion is related to angular 
momentum; the metric is invariant with respect 
to translations in φ .



Case of δθ

We have a solution for this equation.
θ = π /2

Why?

The orbit will lie in a plane, because angular 
momentum is conserved. Choose the orbit 
plane to be the xy plane. All points in the xy 
plane have θ = π /2.
(Newtonian: L = r x mv = mrv sin( θ(r,v)) ez
L is always parallel to the z-axis, so r and v 
are always in the xy plane.)

Now go back and put θ = π /2 into the 
equations.



Case of δr
We don’t need to derive the Euler-Lagrange 
equation for r; instead, we can just use this:

Result

The orbit curve: what is r(φ) ?

(3)



Newtonian mechanics for planetary motion
Energy is conserved and angular momentum is conserved. Compare the orbit equation from Newtonian 

mechanics, to the orbit equation from  General 
Relativity.

Einstein’s calculation of the precession of the 
perihelion of mercury, as a test of the theory of 
general relativity.

Next time: motion of light rays


