Motion of particles and light rays in the neighborhood of a spherical mass

The Schwarzschild metric

For empty space in the neighborhood of a spherical mass, the invariant distance between two events is

 $C^{2}(dt)^{2} = \left(1 - \frac{2GM}{C^{2}r}\right)(C dt)^{2}$ $- \left(1 - \frac{2GM}{C^{2}r}\right)^{-1}(dr)^{2} - r^{2}(d\theta)^{2} - r^{2}\sin^{2}\theta(d\phi)^{2}$

($d\tau$ = proper time for time like separations) We're using these coordinates: {t, r, θ , ϕ } (polar coordinates for the 3D space at a constant time)

We're interested in the trajectory for 4D spacetime.

Compare Minkowski space (mass M = 0)

 $c^{2}(d\tau)^{2} = c^{2}(dt)^{2} - (dx)^{2} - (dy)^{2} - (dz)^{2}$

dx = dy	SinO Cost	+ 1.050	do	6059	β	- 1	(SA	'nO	Si	id d	4
$d\varphi = dr$	Sino Sing	+ 7 0050	10	Sin	4	· +:	r	Si	Ð	ws¢	de
dz = d	r 6050 -	- 1 uno	do							: ; ; ;	
			1 N	х		• •	•			• •	

 $c^{2}(d\tau)^{2} = c^{2}(dt)^{2} - (dr)^{2} - r^{2}(d\theta)^{2} - r^{2}\sin^{2}\theta(d\phi)^{2}$

The Schwarzschild metric tensor

$$c^2(d\tau)^2 = -g_{\mu\nu} dx^{\mu} dx^{\nu}$$

i.e.,
$$\mathbf{x}^0 = \mathbf{ct}$$
; $\mathbf{x}^1 = \mathbf{r}$; $\mathbf{x}^2 = \mathbf{\theta}$; $\mathbf{x}^3 = \boldsymbol{\phi}$.

$$g_{uv} = r - Z(r) 0 0 0$$

$$g_{uv} = r 0 \frac{1}{2(r)} 0 0$$

$$\Theta 0 0 r^{2} 0$$

$$\Theta 0 0 r^{2} 0$$

$$\Theta 0 0 r^{2} 0$$

 $\Sigma(r) = 1 - 2GM/c^2r$

A particle moves on a geodesic; i.e., on a curve Γ such that $\delta \tau = 0$ for any change of Γ . A light ray (wave packet or photon) travels on a null geodesic; i.e., a geodesic with $\tau = 0$.

Now we could use the geodesic equation,

but then we would need to calculate the Christoffel symbols $\Gamma^{\mu}\alpha\beta \qquad \{ \mu, \alpha, \beta = t, r, \theta, \phi \}$ Instead, it's easier to go back to first principles. Require $\delta\tau = 0$ where

 $C \mathcal{L}(T) = \int_{S}^{T} \sqrt{-g_{av}} \frac{dx^{a}}{ds} \frac{dx^{v}}{ds} d\sigma$

 $\begin{array}{l} \Rightarrow \mbox{ the Euler-Lagrange equations} \\ \mbox{ } d/d\sigma \left(\partial L/\partial\xi'\right) - \partial L/\partial\xi = 0 \\ \mbox{ for all 4 independent variations } \delta\xi = \mbox{ } \delta t, \ \delta \sigma, \ \delta \phi \ . \end{array}$

Euler-Lagrange equations $d/d\sigma (\partial L/\partial \xi') - \partial L/\partial \xi = 0$ for $\xi = t, r, \theta, \phi$; $L = (-g_{\mu\nu} x'^{\mu} x'^{\nu})^{1/2}$ with { $x^{\prime\mu}$ means $dx^{\mu}/d\sigma$ } Note: COT = V - guv dx dx do $\mathcal{W} = \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1$ <u>Case of δt (or, δx^{0} where x^{0} = ct)</u> $O = \frac{d}{do} \left(\frac{\partial L}{\partial c^0} - \frac{\partial L}{\partial r^0} \right)$ $= \frac{d}{d\sigma} \left\{ \frac{1}{2} \left(-g \times i \right)^{-k_2} \left(-g_{00} \right) 2 \frac{dx^2}{d\sigma} \right\} - 0$ $= \frac{d}{d\sigma} \left\{ \Sigma(r) \frac{dt}{dr} \right\} \frac{g_{00} = -\Sigma(r)}{dr}$ Kesult Els) dt = d, a constant (

This constant of the motion is related to **energy**; the metric is invariant with respect to translations in time.

<u>Case of $\delta \phi$ </u>

				$ \mathbf{x} = \mathbf{x}$	3	×	12	5	21.12	s - s	20	2	2						
0	. 1.	121		ini	8			*	× 13			*				200	*		-
.0 =	01	aL	-) -	dL	-			÷					а. С		20	1			•
	do. \	20] .	.24		<		×		e x		2		•				2	2
	1	· · ·				• •		1	8			×	24		20		×		
	g	2.1	1 .	CIN	-13	1		•	1		il	\$7).		5	•		•	•
	·do	2.2	()	xx)) . `	-(-9	\$4	(ų	2	de	50			\mathcal{O}		•		
· · · ·						5 6				6		4		•		•	5	•	•
- · · · · · ·	· d	· 1: ·	7					D'I.	.2						-	2			-
	:15	1 -	r	Sih	21	9)	9	10	5	• •		9	1	1	=1	5	Ei)	20	1
т. т. т. т.			e - a				.0	·C	J			0	40	r.	•	•			•
~ · · ·				•				2		•								-	-
Kesult	2.	r2 5	in?	9	de	Þ .		- 1	3	• •	a	ici	n	sta	in	+	• (2)
					di		-	. /	A)									

This constant of the motion is related to **angular momentum**; the metric is invariant with respect to translations in φ .

<u>Case of δθ</u>

 $O = \frac{d}{d\sigma} \left(\frac{\partial L}{\partial r_{\theta}} \right) - \frac{\partial L}{\partial \theta}$ $= \frac{d}{d_{5}} \left\{ \frac{1}{2} \left(-q \dot{x} \dot{x} \right)^{-k_{2}} \left(-q_{00} \right) 2 \frac{d_{0}}{d_{0}} \right\}$ $-\frac{1}{2}(-g \times x)^{-\frac{1}{2}}(-\frac{2}{3}\frac{0}{9}\frac{0}{4}\frac{0}{4})$ $0 = (-g \dot{x} \dot{z})^k \frac{d}{dz} \left\{ -r^2 \frac{d\theta}{dz} \right\}$ $+\frac{1}{2}(-g\dot{\chi}\dot{\chi})^{\frac{1}{2}}2\gamma^{2}sm\theta\omega s\theta\left(\frac{46}{4r}\right)^{2}$ $D = \frac{d}{dr} \left(-r^2 \frac{d\varphi}{dr} \right) + r^2 \frac{d\varphi}{dr} \frac{\partial \varphi}{\partial r} \frac{\partial \varphi}{\partial r}$

We have a solution for this equation. $\theta = \pi / 2$ Why? The orbit will lie in a plane, because angular momentum is conserved. Choose the orbit plane to be the xy plane. All points in the xy plane have $\theta = \pi / 2$. (Newtonian: $\mathbf{L} = \mathbf{r} \times m\mathbf{v} = mrv \sin(\theta(\mathbf{r}, \mathbf{v})) \mathbf{e}_z$ \mathbf{L} is always parallel to the z-axis, so \mathbf{r} and \mathbf{v} are always in the xy plane.)

Now go back and put $\theta = \pi / 2$ into the equations.

 $\Sigma(r) \frac{dt}{dt} = \chi \quad (1)$

 $\Gamma^2 \frac{d\phi}{d\tau} = \lambda \qquad (2)$

<u>Case of δr</u>

We don't need to derive the Euler-Lagrange equation for r; instead, we can just use this:

<u>The orbit curve: what is $r(\phi)$?</u>

<u>Newtonian mechanics for planetary motion</u> Energy is conserved and angular momentum is conserved.

Newtonian Mechanis for planetary motion	•	•	•
Evergy is conserved			
$\frac{1}{2}mr^2 + \frac{L^2}{L^2} - \frac{Ghin}{E} = E =$	m	8	5
and anghelar monantum is answered			
$mr^2 d\phi = 1 = m\lambda$	•		
S me I			
n_{1}^{2} n_{1}^{2} $2GM$	•	•	•
$r = 2\varepsilon - \frac{n}{r^2} + \frac{n}{r}$		•	•
and $p^2 = (\frac{\lambda}{12})^2$			•
Thus the whit exection is	ц.». ; .	*	
$\frac{1}{2} \frac{1}{2} \frac{1}$	4	2	
$ \left(\frac{dq}{d\phi}\right)^2 = \frac{1}{\phi^2} = \frac{1}{\lambda^2} \left(2\xi - \frac{1}{\gamma^2} + \frac{\xi}{\gamma}\right) $	1 (5	> .	•
1/412 20		•	•
$\binom{a_1}{d\phi} = \frac{-2}{\lambda^2}r^4 - r^2 + \frac{-2GM}{\lambda^2}r^3$:	

Compare the orbit equation from Newtonian mechanics, to the orbit equation from General Relativity.

Compare the quation from G.R.: Let $2\mathcal{E} = (\alpha^2 - 1)c^2$. Then for G.R., $\left(\frac{d\sigma}{d\phi}\right)^2 = \frac{2\mathcal{E}}{\lambda^2}r^4 + \frac{2GM}{\lambda^2}r^3 - r^2 + \frac{2GMr}{c^2}$ For Norstanian Mechanico, the orbits are conic sections (hypatrice, parabole, or ellips). The relativity parturbation = 2GMr/c^2.

Einstein's calculation of the precession of the perihelion of mercury, as a test of the theory of general relativity.

Next time: motion of light rays