Light Rays and Black Holes

Black Holes

Q : What is a black hole?
A: An infinitely compressed mass Picture

Q: Do they exist?
A: In theory, yes.
The invariant distance in coordinates
$(\mathrm{t}, \mathrm{r}, \theta, \varphi)$ is ds:
$(\mathrm{ds})^{2}=\Sigma(\mathrm{r}) \mathrm{c}^{2}(\mathrm{dt})^{2}$
$-(d r)^{2} / \Sigma(r)-r^{2}(d \theta)^{2}-r^{2} \sin ^{2} \theta(d \varphi)^{2}$
$\Sigma(r)=1-2 G M / c^{2} r=1-r_{s} / r$
$r_{s}=2 G M / c^{2}$
Q: Do they exist in reality?
A: Yes. There are several kinds.

Supermassive black holes

$\mathrm{M} \sim 10^{5}--10^{9} \mathrm{M}_{\odot}$
How did they form? ???
Are they common? Yes, many (or most) galaxies have a SMBH at the center.
What about the Milky Way galaxy?
Sagittarius A is a radio source at the center of the Milky Way galaxy, discovered in 1974.
Related: quasars, Seyfert galaxies, AGN
Collapsed stars

$$
\mathrm{M} \sim 3-30 \mathrm{M}_{\odot}
$$

Gravitational collapse of a massive star ($\mathrm{M}>\sim$ $10 \mathrm{M}_{\odot}$) produces a black hole.
Stellar mass black holes in the Milky Way galaxy: 15 candidates are known in X-ray binaries, with masses ranging from 4 to $14 \mathrm{M}_{\odot}$.
Primordial black holes
$\mathrm{M}<\sim 10^{9} \mathrm{~kg}$
People search for the Hawking radiation that they would produce, e.g., gamma-rays with photon energies $\mathrm{E}>10^{3} \mathrm{GeV}$.

Light rays (wave packets or photons) travel on null geodesics.

$$
(t, r, \theta, \varphi)
$$

Geodesic equations for a particle
$\Sigma(\mathrm{r}) \mathrm{dt} / \mathrm{d} \tau=\mathrm{a}$
(1)
$r^{2} d \varphi / d \tau=\lambda$
(2)
$\theta=\pi / 2$
(3) (orbit in the ky plane)

$$
\begin{equation*}
(\mathrm{dr} / \mathrm{d} \tau)^{2}=\left[\mathrm{a}^{2}-\Sigma(\mathrm{r})\right] \mathrm{c}^{2}-\lambda^{2} \Sigma(\mathrm{r}) / \mathrm{r}^{2} \tag{4}
\end{equation*}
$$

where $d \tau=$ proper time.

$$
\Sigma(\mathrm{r})=1-\mathrm{r}_{\mathrm{s}} / \mathrm{r}
$$

Equations for null geodesics
Take the limit dit --> 0 , but carefully.
Let $\lambda / a=b c ; b=$ impact parameter

$$
\begin{aligned}
\frac{d t}{d \phi} & =\frac{d r / d r}{d \phi / d r}=\frac{\alpha}{\lambda} \frac{r^{2}}{\sum(r)}=\frac{r^{2}}{b c \Sigma(r)} \\
\left(\frac{d r}{d \phi}\right)^{2} & =\frac{(d r / d r)^{2}}{(d \phi / d r)^{2}}=\frac{\left[d^{2}-\Sigma(r)\right] c^{2}-d^{2} \Sigma(r) / r^{2}}{\left(\lambda / p^{2}\right)^{2}} \\
& =r^{4}\left\{\frac{1}{b^{2}}-0-\left(1-r_{s} / r\right) / r^{2}\right\} \\
\left(\frac{d r}{d \phi}\right)^{2} & =r^{4} / b^{2}-r^{2}+r_{s} r \rightarrow \infty
\end{aligned}
$$

Trajectories of light rays (spatial trajectory = the worldling projected onto the wy plane)

Introduce scaled variables for numerical calculations

Let $b=r_{s} \beta ; \quad$ i.e., $\beta=b / r_{s^{\prime}}$ a dimensionless constant.

Let $\mathrm{r}=\mathrm{r}_{\mathrm{S}} \xi ; \quad$ ie., $\xi=\mathrm{r} / \mathrm{r}_{\mathrm{S}^{\prime}}$ a dimensionless variable.

$$
\begin{gathered}
r_{s}^{2}\left(\frac{d \xi}{d \phi}\right)^{2}=r_{s}^{2} \xi^{4} / \beta^{2}-r_{s}^{2} \xi^{2}+r_{s}^{2} \xi \\
\left(\frac{d \xi}{d \phi}\right)^{2}=\xi^{4} / \beta^{2}-\xi^{2}+\xi \\
d \phi=\frac{ \pm d \xi}{\sqrt{\xi^{4}\left(\beta^{2}-\xi^{2}+\xi\right)}} \\
\text { integrate to get } \phi(\xi) .
\end{gathered}
$$

There are unbound orbits and capture orbits.
For unbound orbits, the light ray has a point of closest approach to the black hole.

At that point, $\xi=\xi_{c}$
where $\xi^{4} / \beta^{2}-\xi^{2}+\xi=0$; and $\varphi=\varphi_{c}$

For $\varphi<\varphi_{c}$,

$$
\varphi=-\int_{\xi}^{\infty} \mathrm{d} \xi^{\prime} / \operatorname{Sqrt}\left[\xi^{\prime} / \beta^{2}-\xi^{\prime 2}+\xi^{\prime}\right]
$$

For $\varphi>\varphi_{c}$,

$$
\varphi=\int_{\xi_{\mathrm{c}}}^{\xi} \mathrm{d} \xi^{\prime} / \operatorname{Sqrt}\left[\xi^{\prime 4} / \beta^{2}-\xi^{\prime 2}+\xi^{\prime}\right]
$$

For capture orbits, the light ray spirals into the origin, $\mathrm{r}=0$. There is no turning point.

$$
\varphi=-\int_{\xi}^{\infty} \mathrm{d} \xi^{\prime} / \operatorname{Sqrt}\left[\xi^{\prime} / \beta^{2}-\xi^{\prime 2}+\xi^{\prime}\right]
$$


```
In[1057]:= Clear[\xi, \ximin];
    bs = {FontFamily }->\mathrm{ "Utopia", FontSize }->\mathrm{ 14};
    fancy = {BaseStyle }->\mathrm{ bs, AspectRatio }->\mathrm{ 13/14};
```


Light rays moving toward a black hole

$\ln [1060]:=$ Jincoming $\left[\beta_{-}, \xi_{-}\right]:=$
NIntegrate [1/Sqrt[$\xi \mathrm{p} \wedge 4 / \beta \wedge 2-\xi \mathrm{p} \wedge 2+\xi \mathrm{p}]$, $\{\xi \mathrm{p}, \mathrm{\xi}$, Infinity\},
WorkingPrecision $\rightarrow 32$, AccuracyGoal $\rightarrow 20$]
Table[Jincoming $[5, \xi],\{\xi,\{20,15,10,5\}\}]$
Joutgoing $\left[\beta_{-}, \xi_{C_{-}}, \xi_{-}\right]:=$
NIntegrate[1/Sqrt[$\xi \mathrm{p} \wedge 4 / \beta \wedge 2-\xi \mathrm{p} \wedge 2+\xi \mathrm{p}]$, $\{\xi \mathrm{p}, \xi \mathrm{c}, \xi\}$,
WorkingPrecision $\rightarrow 32$, AccuracyGoal $\rightarrow 20$]
Out[1061]=\{0.25257626352943676675738025455868, 0.33949121284087612513802101194706,
$0.52155473381178479398302226590165,1.2564130786171602748721689440731\}$

Integration for unbound orbits

$\ln [1063]:=$ ib10 = 40; Nsteps $=100$

$\{\beta, \xi 0\}=\{$ ib10/10, 10\};
FindRoot $[\xi \wedge 4 / \beta \wedge 2-\xi \wedge 2+\xi,\{\xi, \beta\}$,
WorkingPrecision $\rightarrow 32$, AccuracyGoal $\rightarrow 20$];
smin $=\%[$ [1]] [[2]]
(**)
$\mathrm{d} \xi=(\xi 0-\xi m i n) /$ Nsteps $;$
tbl = \{\};
$\mathrm{D} \circ[\xi=\xi 0-\mathrm{d} \xi * j$;
ϕ temp $=$ Jincoming $[\beta, \xi]$;
tbl $=$ Join $[$ tbl,$\{\{\xi * \operatorname{Cos}[\phi$ temp $], \xi * \operatorname{Sin}[\phi$ temp $]\}\}]$,
\{j, 0, Nsteps -1\}];
$\phi \mathrm{c}=\mathrm{Jincoming}[\beta, \xi \min]$;
tbl $=\operatorname{Join}[\operatorname{tbl},\{\{\xi \min * \operatorname{Cos}[\phi \mathrm{c}], \xi \min * \operatorname{Sin}[\phi \mathrm{c}]\}\}] ;$
Do $[\xi=\xi \mathrm{min}+\mathrm{d} \xi * j$;
ϕ temp $=\phi \mathrm{c}+$ Joutgoing $[\beta, \xi \mathrm{min}, \xi]$;
tbl $=\operatorname{Join}[\operatorname{tbl},\{\{\xi * \operatorname{Cos}[\phi$ temp $], \xi * \operatorname{Sin}[\phi$ temp $]\}\}$,
\{j, 0, Nsteps - 1\}];
(**)
lp [ib10] = ListPlot[tbl, fancy, Joined \rightarrow True, Plotstyle \rightarrow \{Red, AbsoluteThickness [2]\},
PlotRange $\rightarrow\{\{-6,8\},\{-6,7\}\}]$
Qut[1063]= 100
$O u t[1066]=3.3502617411332921417792435963001$

Integration for capture orbits

$\ln [1074]:=$ ib10 $=25$; Nsteps $=1000$;
$\{\beta, \xi 0\}=\{\mathrm{ib} 10 / 10,10\}$;
$\xi \min =0$
(**)
$\mathrm{d} \xi=(\xi 0-\xi \mathrm{min}) /$ Nsteps $;$
tbl = \{\};
Do $[\xi=\xi 0-\mathrm{d} \xi * j$;
ϕ temp $=$ Jincoming $[\beta, \xi] ;$
$\mathrm{tbl}=\operatorname{Join}[\mathrm{tbl},\{\{\xi * \operatorname{Cos}[\phi$ temp],$\xi * \operatorname{Sin}[\phi$ temp] $\}\}]$, \{j, 0, Nsteps -1\}];
(**)
lp [ib10] = ListPlot[tbl, fancy, Joined \rightarrow True,
PlotStyle \rightarrow \{Red, AbsoluteThickness[2]\},
PlotRange $\rightarrow\{\{-6,8\},\{-6,7\}\}]$
Out[1076] $=0$

