Lecture 2 - Preview
Maxwell's Equations
The fundirental forms a Maxwell's quations are

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\rho / \epsilon_{0} \quad \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \nabla \cdot \vec{B}=0 \quad \nabla \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

where $\nabla_{1} \vec{J}+\frac{\partial \rho}{\partial t}=0 \quad$ (cnininuits equation)
The fields exeat forks on changed particles

$$
\vec{F}=q \vec{E}(\vec{x})+q \vec{v} \times \vec{E}(\vec{x}) .
$$

- Note how these equations differ from the field quations of electrostatic and mugretostatic.
§ Faraday's Caw $\nabla \times \vec{E}=\frac{-\partial \vec{B}}{\partial t}$
or, $\oint_{c} \vec{E} \cdot d \vec{l}=-\frac{d}{d t} \int_{S} \vec{B} \cdot d \vec{A}$
or emf $=-\frac{d \Phi}{d t}$ (PAy 184)
§ Maxwell's displacement current

$$
\begin{aligned}
& \vec{J}_{D}=\epsilon_{D} \frac{\partial \vec{E}}{\partial t} \\
& \nabla \times \vec{B}=v_{0}\left(\vec{\jmath}+J_{D}\right) \\
& \int_{\text {current due to charged porkiele flow }}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\rho / \epsilon_{0} \text { and } \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \nabla \cdot \vec{B}=0 \text { and } \nabla \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

- In practice, we only use these equations for isolated charges and currents

$$
\begin{array}{ll}
\rho(\vec{x})=\sum_{i=1}^{N} Q_{i} \delta^{3}\left(\vec{x}-\vec{x}_{i}\right) & \frac{\text { mit }}{C / m^{3}} \\
\vec{J}(\vec{x})=\sum_{i=1}^{N} Q_{i} \cdot \vec{v}_{i} \delta^{3}\left(\vec{x}-\vec{x}_{i}\right) & C \frac{\min \frac{1}{s} \frac{A}{m^{3}}=\frac{A}{m^{2}}}{}
\end{array}
$$

- Self consistency

$$
\begin{array}{ll}
\nabla \in(\nabla \times \vec{B})=0 & \text { identity } \nabla \cdot(\nabla \times \vec{F})=0 \\
\text { for any } \vec{F}(\vec{x})
\end{array}
$$

so he most have $\nabla_{n}\left(\mu_{0} \vec{J}+\mu_{0} \in \frac{\partial E}{\partial t}\right)=0$

$$
\begin{aligned}
& =\mu_{0}\left(\nabla \cdot \vec{J}+\frac{\partial}{\partial t} \epsilon_{0} \nabla \vec{E}\right) \\
& =\mu_{0}(\nabla \cdot \vec{J}+\partial s / \partial t) \\
& =0 \text { ky the antinanit question. }
\end{aligned}
$$

- Cousenation \% charge

Consider the charge Q inside $S V$.

$$
\begin{aligned}
& \frac{d Q}{d t}=-\oint_{\text {surficas }} J \cdot d \vec{A} \quad \begin{array}{c}
\text { conservation } \\
\text { of charge }
\end{array} \\
& =-\int_{\delta V}(\nabla \cdot \vec{J}) d^{3} x \quad \begin{array}{c}
\text { (Gauss's } \\
\text { therver. })
\end{array} \\
& \left.=+\int_{\delta v} \frac{\partial \rho}{\partial t} d \gamma \quad \begin{array}{c}
\text { (contimit } \\
\text { equation) }
\end{array}\right) \\
& =\frac{d}{d t} Q
\end{aligned}
$$

Consaration \& charge is quiblant to the antincitin equation.

```
Macroscopic matter
    \(\rightarrow\) wale weed to mate approximations
            because we cant follow all
            The atomic particles independent thy
            Chap. 6 : dielectrics
            Chap. 9 : magnetic materials
Maxwell's Eequatius with Matter
\[
\nabla \cdot \vec{D}=\rho_{\text {free }} \text { and } \nabla \times \stackrel{\rightharpoonup}{E}=-\frac{\partial \vec{B}}{\partial t}
\]
\[
\nabla_{1} \vec{B}=0 \quad \text { and } \quad \nabla \times \vec{H}=\vec{J}_{\text {free }}+\frac{\partial \vec{D}}{\partial t}
\]
\[
\text { when } \vec{D}=\sigma_{0} \vec{E}+\vec{p} \text { and } \vec{H}=\frac{1}{\mu_{0}} \vec{B}-\vec{M}
\]
\[
\text { polarization } \uparrow \text { magnetization } \uparrow
\]
\[
\rho_{\text {Free }}^{(\vec{x})}=\frac{f_{r e e}}{\frac{1}{2}} \text { charge density, averaged }
\]
\[
J_{\text {free }}(\vec{x})=\frac{\text { free current density, }}{\sqrt{\xi}} \text { averred similarly }
\]
```

Examples

How does the glass sphere affect the electric field?
$T_{\text {charged }}$ glasses sphere (cha p.6)

Why is a bar magnet like a solenoid? (Chap.9)

Maxwell's theory of light.
How do electromagnetic waves propagate in space? How is the propagation affected by materials?

Relativity (Chapter 12)
Einstein asked: How is the propagation of light described ky Maxwell's quations?
Does an aether exist?
If not, how does light degand on the frame of reference of the observer? How do the \vec{E} and \vec{B} fields depend on the frame of reference?
These questions led Einstein to the theory of special relativity.

The covariant Form of ELECTROMAGNETISM

$$
\begin{array}{ll}
\sum_{\nu=0}^{3} & \frac{\partial F^{\mu v}}{\partial x^{v}}=\mu_{0} J^{\mu} \\
\sum_{\nu=0}^{3} & \frac{\partial G^{\mu v}}{\partial x^{v}}=0
\end{array}
$$

\rightarrow This unified theory Gives the ultimate appreciation of electromagnetism.

Example

(A) What is $\vec{D}(x)$ between the plates?
(B) What is $\vec{E}(\vec{x})$ between the plates?
(give the values week units)

$$
E_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}}{V_{\mathrm{m}}}
$$

