Electiostatics and Dielectrics
(Chapta 6) - a quick summany becouse you strdied this in PHy481,
Polarization $\vec{P}(\vec{x})$
All metter is atomic (or molecular) and atoms and moleales contain charged particks. The net chasee is 0 , lut there may be polariation

The dipole monact $\vec{\psi}$ poonits from - to + ; in \vec{E}, \vec{p} oxperiences a torque torvald algunent

$$
\overrightarrow{-0+}_{\rightarrow E} E
$$

Define "dipile movart" $\vec{\delta}$

- Fre 2 charges $\stackrel{{ }_{q}}{\stackrel{\delta}{t}}$ tq $\quad \vec{p}=q \vec{\delta}$
- Frr a cuntinuous distripation

$$
\vec{p}=\int \vec{x} \rho(\vec{x}) d_{x}{ }_{x}
$$

In the quilibrinm stute, \vec{p} algns with the locul field; $\langle\vec{p}\rangle=\alpha \hat{E}(\vec{x})$ Caveryge mount is a neythertord y \vec{x}_{1}

The Polarization Field $\stackrel{\rightharpoonup}{P}(\vec{x})$
Custer a sample q dickopric material. Subdivide te sample into many small subvolumes. But atoms are so ting that each subvolume contains mary atoms.
Define $\vec{P}(\vec{x})=\frac{1}{\delta V} \sum_{i=1}^{\delta N} \vec{p}_{i}$;
or $\vec{P}(\vec{x})=\frac{\delta N}{\delta V}\langle\vec{p}\rangle$;

$$
\text { i.e., } \vec{P}(\bar{X})=\text { polarisation }=\frac{\text { dipole }}{\text { densing }}
$$

"Free charge" and "Bound charge"

$$
\begin{equation*}
\vec{\rho}(\vec{x})=\rho_{\text {Free }}(\vec{x})+\rho_{\text {Bound }} \tag{x}
\end{equation*}
$$

charge that hus
\uparrow charge that belongs been added to the t the atom is of to dielectric dielectric
We cunt relate $\rho_{\text {Bound }}(\vec{x})$ to $\vec{P}(\vec{x})$.

Theorem

$$
\begin{aligned}
& \rho_{B}(\vec{x})=-\nabla \cdot \vec{\rho} \text { for } \vec{x} \text { inside te } \\
& \text { dielectric } \\
& \sigma_{B}(\vec{x})=\hat{n}, \vec{\rho} \text { for } \vec{x} \text { on thinsurfoce } \\
& \text { of the dielectric }
\end{aligned}
$$

Prof
Recall the clectiostanis potential $V_{\alpha}(\vec{x})$
$\xrightarrow{\text { of }}$ un electric siple $(\vec{E}=-\nabla V)$.

$$
\begin{aligned}
& \vec{V}(\vec{x})=\int_{\text {sample }} \frac{d \vec{p} \cdot\left(\vec{x}-\vec{x}^{\prime}\right)}{4 \pi G_{0}\left|\vec{x}-\vec{x}^{\prime}\right|^{3}} \text { from the } \\
& \text { bound charge }
\end{aligned} d \vec{p}=\vec{P}\left(\vec{x}^{\prime}\right) d^{3} x^{\prime} .
$$

$$
\begin{aligned}
V(\bar{x}) & =\oint_{\text {surface }} \frac{\hat{\eta}^{\prime} \cdot \vec{P}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d A^{\prime}+\int_{\text {sample }} \frac{-\overrightarrow{-} \cdot \vec{P}\left(\bar{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d x^{\prime} x^{\prime} \\
& =\oint_{S} \frac{\sigma_{B} d A^{\prime}}{\left|\vec{x}-\vec{x}^{\prime}\right|}+\int_{V} \frac{\rho_{B}\left(\vec{x}^{\prime} \mid d^{3} x^{\prime}\right.}{\left|\vec{x}-\vec{x}^{\prime}\right|} / 4 \pi \sqrt{60}
\end{aligned}
$$

Fee., V is exactly te same as for surface charge density $\sigma_{\beta}=\hat{n}^{\prime} \cdot \vec{P}\left(\vec{x}^{\prime}\right)$ and volume chare density $\rho_{B}=-\nabla!\vec{P}\left(x^{\prime}\right)$ Q, E, D
now intgrente le parts

$$
\vec{P} \cdot \nabla^{\prime} \frac{1}{R}=\nabla^{\prime} \cdot\left(\frac{\vec{P}}{R}\right)-\frac{\nabla^{\prime} \cdot \vec{P}}{R}
$$

January

The Displacereat tick $\vec{D}(\vec{x})$
Define $\vec{D}=\sigma_{0} \stackrel{\bullet}{E}+\vec{P}$,
Ren

$$
\begin{aligned}
\nabla \cdot \vec{D} & =\sigma_{0} \nabla \cdot \vec{E}+\nabla \cdot \vec{P} \\
& =\rho-\rho_{B} \\
& =\rho_{F}
\end{aligned}
$$

$$
\nabla \cdot \vec{D}=\rho_{\text {Free }} \text { and } \vec{D}=\sigma_{0} \vec{E}+\vec{P} \text {. }
$$

Consequenas

- Gaussis Law
$\oint_{S} \vec{D} \cdot d \vec{A}=Q_{\text {free }} /$ by Gauss's $\begin{gathered}\text { therem/ } \\ \text { them }\end{gathered}$
- Boondary conclitins (myprtant!)
D_{n} b' antinuons across a surface if $\sigma_{\text {Free }}=0$; otherwise

$$
D_{n}^{(1)}-D_{n}^{(-)}=\sigma_{\text {Free }} .
$$

Catuintrical alume manit hught $\rightarrow 0$

$$
\begin{aligned}
S \vec{D} \cdot d \vec{A} & =D_{n}^{(+)} A-D_{m}^{(-)} A=Q_{\text {he }} \\
& =\sigma_{\text {flea }} A \\
\therefore D_{n}^{(+)} & -D_{n}^{(-)}=\sigma_{\text {frea }}
\end{aligned}
$$

Isotronic Lirear Didectrics
Many isotomic misulatios are "liear dielectrics"; $1 . \hat{e}$. , the b a liear relatimship be tween polarizating an the electric fided

$$
\frac{\overrightarrow{\equiv D}+}{\overrightarrow{2}} \vec{E} \quad\langle\vec{p}\rangle \propto \vec{E}(\vec{x})
$$

Glass, water, gases and liquids, ets.

Muterial paraneters for lixar didedica

- Xe electric suscestribility

$$
\vec{P}=x_{e} \epsilon_{0} \vec{E} \leftarrow N \overrightarrow{d e} ; x_{0}>0
$$

- $\in \quad \begin{aligned} & \text { perinitinitit } \\ & \vec{D}=G \vec{E}\end{aligned}$

$$
\leftarrow N_{0} t: \epsilon>\epsilon_{0}
$$

Note that $E=\sigma_{0}\left(1+x_{c}\right)^{M}$ beccanse

$$
\vec{D}=\sigma_{0} \vec{E}+\vec{P}=\left(1+x_{e}\right) \sigma_{0} \vec{E}=\epsilon \vec{E}
$$

- K diclectric constimat +

$$
K=\epsilon / e_{0} \quad \leftarrow \text { wote }: K>1
$$

$$
K=\frac{\epsilon}{\varepsilon_{0}}=1+x_{e}
$$

any of these material ansfents can te used to speaify the didectric parerties of te material.

