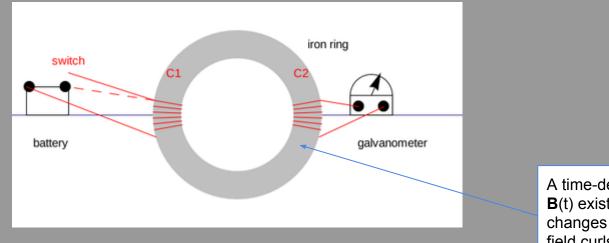

Electromagnetic Induction (Chap. 10)

E. M. induction was discovered in 1831,


by Michael Faraday (London, England)

and by Joseph Henry (Albany, NY), independently.

Faraday's discovery (one of his many demonstrations)

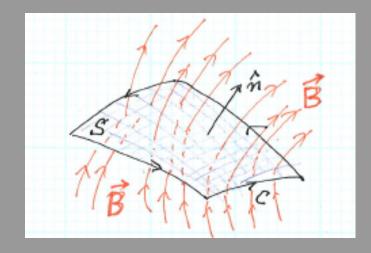
Close the switch \implies a temporary deflection of the galvanometer needle Open the switch \implies a temporary deflection of the galvanometer needle When the magnetic field CHANGES, there is an induced electric current in coil C2. But the induced current is a secondary effect. Electromagnetic Induction: When the magnetic field **B** changes (by closing or opening the switch) then there is an induced electric field **E** that curls around the change of **B**.

A time-dependent magnetic field **B**(t) exists around the ring. As it changes (in time) an electric field curls around the ring.

The induced electric field is the primary effect. If there is a conductor present, then **E** will drive a current in the conductor; but the current is a secondary effect. Two additional concepts that are used in the theory of Electromagnetic Induction

• Magnetic Flux

• Electromotive Force


Magnetic Flux

$$\Phi_{M} = \int_{S} \vec{B} \cdot d\vec{A} \qquad ; d\vec{A} = \hat{n} \, dA$$

The flux \mathbf{q} can *change* in several ways ...

- dB /dt ; electromagnetic induction; curl E = -dB/dt
- S could move or change shape ; motional e.m.f.

In either case, there is an e.m.f. around the boundary curve C.

E.M.F. = <u>E</u>lectromotive Force
EMF is a tricky concept.
It does not have the units of force; it is Work/Charge = [N*m/C] = [Volts]
Three concepts that can be confused:
EMF, potential difference, voltage

EMF (E) In gevand, deforme E = work per unit charge done by a force F when a test charge moves along a curve T. $\mathcal{Z}(r) = \int_{r} \frac{\vec{F} \cdot d\vec{l}}{r}$ (*) For an electrostatie force, F=gE; and VXE=0 7 E= - VV When V(2) = clechostakic potential. Then E(T) = Sr (- tV) · di = - [V(t) - V(t)]. For a closed core C, E(e) = 0. a to t) (. *) For any ansenative force (including all electustatic forces) E(d) = 0. for a closed curve. (*) For electromynetic unduction, VXE = 0; Flen & E. at = nonzero enf around the arrie.


Faraday's Law

put into mathematical terms by James Clerk Maxwell

(1) $\nabla x \vec{E} = - \frac{\partial \vec{E}}{\partial t}$

Meaning: if **B** changes in time, then there must be an electric field **E** that curls around the change of **B**.

(2) Consider a surface *S* with boundary curve *C*. (The directions of the normal vector **n** of *S*, and the circulation around *C*, are related by the right hand rule.) Then,

 $\int_{S} \nabla x \vec{E} \cdot d\vec{A} = \oint_{c} \vec{E} \cdot d\vec{R} \quad (Stekes's)$ $(\Rightarrow - \frac{d}{dt} \int_{C} \vec{B} \cdot d\vec{A} \quad (Faraday's)$ (aw)

$$\mathcal{E} = -\frac{d \, \Phi_{M}}{dt}$$

$$\mathcal{E} = emf = \oint_{C} \vec{E} \cdot d\vec{l}$$

$$\Phi_{M} = Maynahic flax = \int_{S} \vec{B} \cdot d\vec{A}$$