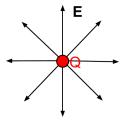
Maxwell's Equations (Chapter 11)

The fundamental equations for electric and magnetic fields.

Let p(x,t) = charge density and J(x,t) = current density

(1) Gauss's law
$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$
 (1)

$$\mathbf{E} = \frac{\mathbf{Q}}{4\pi \varepsilon_0} \mathbf{r}^2$$

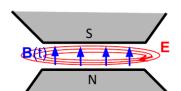


$$(2) Gauss's law, \qquad \nabla \cdot \mathbf{B} = 0 \tag{2}$$

but magnetic monopoles do not exist*

Or, the equivalent integral equations

(3) Faraday's law $\nabla \mathbf{x} \mathbf{E} = -\partial \mathbf{B} / \partial \mathbf{t}$ (3) \mathbf{E} curls around the change of \mathbf{B}



(4) The Ampere-Maxwell law

$$\nabla$$
 x **B** = μ_0 **J** + "X"

Maxwell realized that "X" cannot be zero: $\nabla \cdot (\nabla \times \mathbf{B})$ is always zero --- that's a mathematical identity; but $\nabla \cdot \mathbf{J}$ is not always zero.

Conservation of charge implies

$$\nabla \cdot \mathbf{J} = -\partial \rho / \partial \mathbf{t}$$
 ("continuity equation")

$$\nabla$$
 x **B** = μ_0 **J** + "X"

$$\nabla \cdot (\nabla \times \mathbf{B}) = 0 = \mu_0 \nabla \cdot \mathbf{J} + \nabla \cdot \mathbf{''} \mathbf{X''}$$

$$\nabla \cdot \mathbf{J} = -\partial \rho / \partial \mathbf{t} = \nabla \cdot (-\varepsilon_0 \, \partial \mathbf{E} / \partial \mathbf{t})$$

$$0 = \nabla \cdot (-\mu_0 \varepsilon_0 \partial \mathbf{E}/\partial t) + \nabla \cdot \mathbf{''X''}$$

Simplest possibility is "X" = $\mu_0 \epsilon_0 \partial \mathbf{E} / \partial t$.

(4) The Ampere-Maxwell law

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \partial \mathbf{E} / \partial \mathbf{t}$$
 (4)

Equations (1) -- (4) were published by Maxwell in 1864. We still use the same equations today.

Maxwell's displacement current

Define $\mathbf{J}_{D} = \varepsilon_{0} \partial \mathbf{E} / \partial \mathbf{t}$

Then
$$\nabla x \mathbf{B} = \mu_0 (\mathbf{J} + \mathbf{J}_0)$$

So a there are two different ways that a magnetic field can be created: from the charge current \mathbf{J} (carried by particles) or from the displacement current \mathbf{J}_{D} (a field effect).

Note the similarity to Faraday's law!

Fields without charges

Consider $\rho = 0$ and $\mathbf{J} = 0$.

Now the field equations are...

$$\nabla \cdot \mathbf{E} = 0$$
 and $\nabla \cdot \mathbf{B} = 0$

$$\nabla$$
 x E = $-\partial$ B / ∂ t and ∇ x B = $\mu_0 \varepsilon_0 \partial$ E/ ∂ t

This effect was not observed experimentally in the time of Maxwell.

These "free field equations" can be satisfied by waves of electric and magnetic fields electromagnetic waves.

Wave solutions

Try these functions:

$$\mathbf{E}(\mathbf{x},\mathbf{t}) = \mathbf{E}_0 \sin(\mathbf{k} \cdot \mathbf{x} - \omega \mathbf{t})$$
$$\mathbf{B}(\mathbf{x},\mathbf{t}) = \mathbf{B}_0 \sin(\mathbf{k} \cdot \mathbf{x} - \omega \mathbf{t})$$

(1)
$$\nabla \cdot \mathbf{E} = \mathbf{k} \cdot \mathbf{E}_0 \cos(\mathbf{k} \cdot \mathbf{x} - \omega t) = 0$$

Therefore $\mathbf{k \cdot E}_0$ =0; the electric field oscillations are transverse, i.e., perpendicular to the direction of wave motion (\mathbf{k}).

(2)
$$\nabla \cdot \mathbf{B} = \mathbf{k} \cdot \mathbf{B}_0 \cos(\mathbf{k} \cdot \mathbf{x} - \omega t) = 0$$

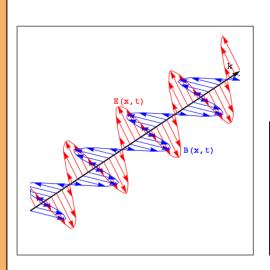
Therefore $\mathbf{k} \cdot \mathbf{B}_0 = 0$; the magnetic field oscillations are transverse, i.e., perpendicular to the direction of wave motion (\mathbf{k}) .

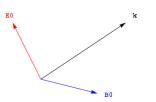
(3)
$$\nabla \times \mathbf{E} + \partial \mathbf{B} / \partial \mathbf{t} =$$

($\mathbf{k} \times \mathbf{E}_0 - \omega \mathbf{B}_0$) $\cos(\mathbf{k} \cdot \mathbf{x} - \omega \mathbf{t}) = 0$
Therefore $\mathbf{B}_0 = (\mathbf{k} \times \mathbf{E}_0) / \omega$; \mathbf{B}_0 is perpendicular to \mathbf{E}_0 .

Wave solutions

- $\mathbf{E}(\mathbf{x},\mathbf{t}) = \mathbf{E}_0 \sin(\mathbf{k} \cdot \mathbf{x} \omega \mathbf{t})$
- $\mathbf{B}(\mathbf{x},t) = \mathbf{B}_0 \sin(\mathbf{k} \cdot \mathbf{x} \omega t)$
- k, E₀ and B₀ form an orthogonal triad of vectors
- $B_0 = (k \times E_0)/\omega$





k: the wave vector; direction of propagation; magnitude =2 pi /lambda

 ω : the angular frequency = 2 pi / T .

(4) The Ampere-Maxwell law

$$\nabla \mathbf{x} \mathbf{B} = \mu_0 \varepsilon_0 \partial \mathbf{E} / \partial \mathbf{t}$$

$$\mathbf{k} \times \mathbf{B_0} = \mu_0 \varepsilon_0 \quad (-\omega \ \mathbf{E_0})$$

$$\mathbf{k} \times (\mathbf{k} \times \mathbf{E}_0)/\omega = -\mathbf{k}^2 \mathbf{E}_0/\omega$$

And so... $k^2 = \omega^2 \mu_0 \varepsilon_0$

the final requirement for the four Maxwell equations.

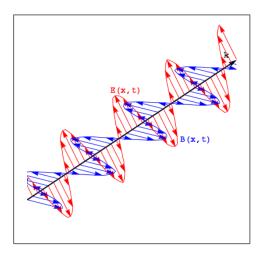
The wave velocity

"Phase Velocity" of a harmonic wave = wavelength/period of oscillation = $(2 \text{ pi /k}) / (2 \text{ pi /}\omega) = \omega / k = 1 / (\mu_0 \epsilon_0)^{1/2}$ = 3.00 x 10⁸ m/s , and that is the speed of light!

Result

Phase velocity = $\omega/k = 1/(\mu_0 \epsilon_0)^{1/2} = c$, the speed of light.

So Maxwell concluded that *light is an* electromagnetic wave.



Furthermore, nothing in the theory limits the wavelength. So the theory implies the existence of an infinite spectrum of EM waves.

