### **Maxwell's Equations**

### - Energy and Potentials

The fundamental equations, for isolated charges and currents in empty space,

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$
 and  $\nabla \cdot \mathbf{B} = 0$ 

$$\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial \mathbf{t}$$

and 
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \partial \mathbf{E} / \partial \mathbf{t}$$

### Energy and momentum of E and B fields

We already know...

== the electric field energy density

$$u_{E}(\mathbf{x},t) = \frac{1}{2} \varepsilon_{0}^{2} E^{2}$$
[Units:  $(C^{2}/Nm^{2}) (N/C)^{2} = N/m^{2} = J/m^{3}$ ]

== the magnetic field energy density

$$u_{M}(\mathbf{x},t) = B^{2}/(2\mu_{0})$$
[Units: T<sup>2</sup> (A/Tm) = (Vs/m<sup>2</sup>) (C/sm) = J/m<sup>3</sup>]

### The Energy Flux

= energy flow per unit area per unit time

Define S(x,t) = energy flux

### Define **S(x**,t) = energy flux

Consider a volume V. Let U be the total field energy inside the volume V.

By conservation of energy,



$$dU/dt = -$$
 $S \cdot dA - dW/dt$ 

(- energy flowing out through the surface)

(- work done on particles)

dU /dt = 
$$\int_{V} (\partial u_{F} / \partial t + \partial u_{B} / \partial t) d^{3}x$$

### Derivation of Poynting's vector **S(x**,t)

$$\partial u_{B} / \partial t = (1/\mu_{0}) \mathbf{B} \cdot \partial \mathbf{B} / \partial t$$
  
=  $-(1/\mu_{0}) \mathbf{B} \cdot (\nabla \times \mathbf{E})$   
by Faraday's law

Note: 
$$\nabla \cdot (\mathbf{E} \times \mathbf{B}) = \varepsilon_{ijk} \partial_i (\mathbf{E}_j \mathbf{B}_k)$$
  

$$= \varepsilon_{ijk} \{ (\partial_i \mathbf{E}_j) \mathbf{B}_k + \mathbf{E}_j (\partial_i \mathbf{B}_k) \}$$
  

$$= (\nabla \times \mathbf{E}) \cdot \mathbf{B} - \mathbf{E} \cdot (\nabla \times \mathbf{B})$$

Thus,

$$\partial u / \partial t = - \nabla \cdot (\mathbf{E} \times \mathbf{B}) / \mu_0 - \mathbf{J} \cdot \mathbf{E}$$

$$dU/dt = - \oiint (\mathbf{E} \times \mathbf{B})/\mu_0 \cdot d\mathbf{A} - dW/dt$$

Check the work done on the charged particles in an infinitesimal volume dV:  $dW/dt = \mathbf{F} \cdot \mathbf{dx} / dt = dQ \mathbf{E} \cdot \mathbf{dx} / dt$ 

 $= \mathbf{E} \cdot (\mathbf{J} \, dA \, dt) \, dx/dt$ 

 $= \mathbf{E} \cdot \mathbf{J} \, dV$ 

Thus the energy flux is equal to the Poynting vector,  $S(x,t) = (E \times B)/\mu_0$ .

# Example: Energy in a plane electromagnetic wave

$$\mathbf{E} = \mathbf{i} \ \mathbf{E}_{o} \ \sin(kz-\omega t)$$
$$\mathbf{B} = \mathbf{j} \ \mathbf{B}_{o} \ \sin(kz-\omega t)$$

### **Energy densities**

$$u_{E} = (\varepsilon_{0} / 2) E_{0}^{2} \sin^{2}(kz - \omega t)$$

$$u_{B} = (1/2\mu_{0}) B_{0}^{2} \sin^{2}(kz - \omega t)$$

$$= (\varepsilon_{0} / 2) E_{0}^{2} \sin^{2}(kz - \omega t)$$

$$(because B_{0} = E_{0}/c \text{ and } \mu_{0}\varepsilon_{0} = 1/c^{2})$$

### The energy flux is

$$S(x,t) = (E \times B)/\mu_0$$

$$= k E_0^2/(\mu_0 c) \sin^2(kz-\omega t)$$

$$= k u c$$

### **Potential Functions**

A(x,t) and V(x,t)
(vector potential and scalar potential)

$$\nabla \cdot \mathbf{B} = 0$$
 implies that we can write  $\mathbf{B} = \nabla \times \mathbf{A}$   
Now,

$$\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial \mathbf{t} = -\nabla \times (\partial \mathbf{A}/\partial \mathbf{t})$$
(Faraday's law)

$$\nabla \times (\mathbf{E} + \partial \mathbf{A}/\partial \mathbf{t}) = 0$$
;  
that means we can write  
 $\mathbf{E} + \partial \mathbf{A}/\partial \mathbf{t} = -\nabla \mathbf{V}$ 

So, 
$$\mathbf{B} = -\nabla \times \mathbf{A}$$
  
and  $\mathbf{E} = -\nabla \mathbf{V} - \partial \mathbf{A} / \partial \mathbf{t}$ 

## <u>Gauge transformations and gauge invariance</u>

The functions  $\bf A$  and  $\bf V$  are not uniquely determined by  $\bf E$  and  $\bf B$  Let  $\lambda(x,t)$  be an arbitrary scalar function.

Define the "gauge transformation" 
$$A' = A + \nabla \lambda$$
 and  $V' = V - \partial \lambda / \partial t$ 

Then 
$$\nabla \times A' = \nabla \times A + \nabla \times (\nabla \lambda) = \nabla \times A = B$$
 and

$$-\nabla V' - \partial A' / \partial t = -\nabla V - \partial A / \partial t + \nabla (\partial \lambda / \partial t) - \partial (\nabla \lambda) / \partial t$$

= E

I.e.,  $\{A', V'\}$  are equivalent potentials (though not equal) to  $\{A, V\}$ .

Homework Exercise 11.5: In the Lorentz gauge (a certain choice of A and V) the potentials A(x,t) and V(x,t) obey the wave equation.