Maxwell's Equations

- Energy and Potentials

The fundamental equations, for isolated charges and currents in empty space,
$\boldsymbol{\nabla} \cdot \mathbf{E}=\rho / \varepsilon_{0}$ and $\boldsymbol{\nabla} \cdot \mathbf{B}=0$
$\boldsymbol{\nabla} \times \mathbf{E}=-\partial \mathrm{B} / \partial \mathrm{t}$
and $\quad \boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \varepsilon_{0} \partial \mathbf{E} / \partial \mathrm{t}$

Energy and momentum of E and B fields

We already know...
$==$ the electric field energy density

$$
\mathrm{u}_{\mathrm{E}}(\mathbf{x}, \mathrm{t})=1 / 2 \varepsilon_{0} \mathrm{E}^{2}
$$

$$
\text { [Units: }\left(\mathrm{C}^{2} / \mathrm{Nm}^{2}\right)(\mathrm{N} / \mathrm{C})^{2}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{J} / \mathrm{m}^{3} \text {] }
$$

== the magnetic field energy density

$$
\mathrm{u}_{\mathrm{M}}(\mathrm{x}, \mathrm{t})=\mathrm{B}^{2} /\left(2 \mu_{0}\right)
$$

[Units: $\mathrm{T}^{2}(\mathrm{~A} / \mathrm{Tm})=\left(\mathrm{Vs} / \mathrm{m}^{2}\right)(\mathrm{C} / \mathrm{sm})=\mathrm{J} / \mathrm{m}^{3}$]

The Energy Flux

= energy flow per unit area per unit time

Define $\mathbf{S}(\mathbf{x}, \mathrm{t})$ = energy flux

Define $\mathbf{S}(\mathbf{x}, \mathrm{t})=$ energy flux

Consider a volume V. Let U be the total field energy inside the volume V.

By conservation of energy,

$$
\mathrm{dU} / \mathrm{dt}=-\oiint \mathrm{S} \cdot \mathrm{dA}-\mathrm{dW} / \mathrm{dt}
$$

(- energy flowing out through the surface)
(- work done on particles)
$\mathrm{dU} / \mathrm{dt}=\int_{\mathrm{V}}\left(\partial \mathrm{u}_{\mathrm{E}} / \partial \mathrm{t}+\partial \mathrm{u}_{\mathrm{B}} / \partial \mathrm{t}\right) \mathrm{d}^{3} \mathrm{x}$

Derivation of Poynting's vector $\mathbf{S}(\mathbf{x}, \mathrm{t})$

$$
\begin{gathered}
\partial \mathrm{u}_{\mathrm{E}} / \partial \mathrm{t}=\varepsilon_{0} \mathbf{E} \cdot \partial \mathbf{E} / \partial \mathrm{t} \\
=\varepsilon_{0} \mathbf{E} \cdot\left(\nabla \times \mathbf{B}-\mu_{0} \mathbf{J}\right) / \mu_{0} \varepsilon_{0} \\
\quad \text { by the Ampere-Maxwell law } \\
=\left(1 / \mu_{0}\right) \mathbf{E} \cdot(\nabla \times \mathbf{B})-\mathbf{J} \cdot \mathbf{E} \\
\\
\begin{array}{c}
\partial \mathrm{u}_{\mathrm{B}} / \partial \mathrm{t}
\end{array}=\left(1 / \mu_{0}\right) \mathbf{B} \cdot \partial \mathbf{B} / \partial \mathrm{t} \\
=-\left(1 / \mu_{0}\right) \mathbf{B} \cdot(\nabla \times \mathbf{E}) \\
\quad \text { by Faraday's law }
\end{gathered}
$$

Note: $\quad \boldsymbol{\nabla} \cdot(\mathrm{E} \times \mathbf{B})=\varepsilon_{\mathrm{ijk}} \partial_{\mathrm{i}}\left(\mathrm{E}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}}\right)$

$$
=\varepsilon_{\mathrm{ijk}}\left\{\left(\partial_{\mathrm{i}} \mathrm{E}_{\mathrm{j}}\right) \mathrm{B}_{\mathrm{k}}+\mathrm{E}_{\mathrm{j}}\left(\partial_{\mathrm{i}} \mathrm{~B}_{\mathrm{k}}\right)\right\}
$$

$$
=(\nabla \times E) \cdot B-E \cdot(\nabla \times B)
$$

Thus,
$\partial \mathrm{u} / \partial \mathrm{t}=-\nabla \cdot(\mathbf{E} \times \mathbf{B}) / \mu_{0}-\mathbf{J} \cdot \mathbf{E}$
$\mathrm{dU} / \mathrm{dt}=-\oiint(\mathbf{E} \times \mathbf{B}) / \mu_{0} \cdot \mathrm{~d} \mathbf{A}-\mathrm{dW} / \mathrm{dt}$
Check the work done on the charged particles in an infinitesimal volume dV :
$d W / d t=F \cdot d x / d t=d Q E \cdot d x / d t$

$$
\begin{aligned}
& =E \cdot(J d A d t) d x / d t \\
& =E \cdot J d V
\end{aligned}
$$

Thus the energy flux is equal to the Poynting vector, $\mathbf{S}(\mathbf{x}, \mathbf{t})=(\mathbf{E} \times \mathbf{B}) / \mu_{0}$.

Example: Energy in a plane

 electromagnetic wave$E=i E_{0} \sin (k z-\omega t)$
$B=j B_{\theta} \sin (k z-\omega t)$

Energy densities

$$
\begin{aligned}
\mathrm{u}_{\mathrm{E}}= & \left(\varepsilon_{\theta} / 2\right) \mathrm{E}_{\theta}^{2} \sin ^{2}(k z-\omega \mathrm{t}) \\
\mathrm{u}_{\mathrm{B}}= & \left(1 / 2 \mu_{\theta}\right) \mathrm{B}_{\theta}^{2} \sin ^{2}(k z-\omega \mathrm{t}) \\
= & \left(\varepsilon_{\theta} / 2\right) \mathrm{E}_{\theta}^{2} \sin ^{2}(k z-\omega \mathrm{t}) \\
& \left(\text { because } \mathrm{B}_{\theta}=\mathrm{E}_{\theta} / \mathrm{c} \text { and } \mu_{\theta} \varepsilon_{\theta}=1 / \mathrm{c}^{2}\right)
\end{aligned}
$$

The energy flux is
$\mathbf{S}(\mathbf{x}, \mathrm{t})=(\mathbf{E} \times \mathbf{B}) / \mu_{\theta}$
$=k E_{\theta}{ }^{2} /\left(\mu_{\theta} c\right) \sin ^{2}(k z-\omega t)$
$=k u c$

```
Potential Functions
\(\mathrm{A}(\mathrm{x}, \mathrm{t})\) and \(\mathrm{V}(\mathrm{x}, \mathrm{t})\)
(vector potential and scalar potential)
\(\boldsymbol{\nabla} \cdot \mathbf{B}=0\) implies that we can
write \(B=\nabla \times A\)
Now,
\(\boldsymbol{\nabla} \times \mathbf{E}=-\partial \mathbf{B} / \partial \mathrm{t}=-\boldsymbol{\nabla} \times(\partial \mathbf{A} / \partial \mathrm{t})\)
    (Faraday's law)
\(\boldsymbol{\nabla} \times(\mathbf{E}+\partial \mathbf{A} / \partial \mathrm{t})=0 ;\)
that means we can write
\(\mathbf{E}+\partial \mathbf{A} / \partial \mathrm{t}=-\boldsymbol{\nabla} \mathrm{V}\)
So, \(B=-\nabla \times A\)
and \(\mathbf{E}=-\boldsymbol{\nabla} \mathrm{V}-\partial \mathbf{A} / \partial \mathrm{t}\)
```


Gauge transformations and gauge invariance

The functions A and V are not uniquely determined by \mathbf{E} and \mathbf{B}
Let $\lambda(x, t)$ be an arbitrary scalar function.

Define the "gauge transformation"
$A^{\prime}=\mathbf{A}+\boldsymbol{\nabla} \lambda$ and $V^{\prime}=V-\partial \lambda / \partial t$
Then $\boldsymbol{\nabla} \times \mathbf{A}^{\prime}=\boldsymbol{\nabla} \times \mathbf{A}+\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \lambda)=\boldsymbol{\nabla} \times \mathbf{A}=\mathbf{B}$ and

$$
\begin{aligned}
-\boldsymbol{\nabla} \mathrm{V}^{\prime}-\partial \mathbf{A}^{\prime} / \partial \mathrm{t}= & -\boldsymbol{\nabla} \mathrm{V}-\partial \mathbf{A} / \partial \mathrm{t} \\
& +\boldsymbol{\nabla}(\partial \lambda / \partial \mathrm{t})-\partial(\boldsymbol{\nabla} \lambda) / \partial \mathrm{t}
\end{aligned}
$$

$=\mathrm{E}$
I.e., $\left\{A^{\prime}, V^{\prime}\right\}$ are equivalent potentials (though not equal)
to $\{\mathrm{A}, \mathrm{V}\}$.

```
Homework Exercise 11.5:
```

In the Lorentz gauge (a certain choice
of A and V) the potentials $A(x, t)$ and V (x, t) obey the wave equation.

