Electric and magnetic units ... $F = q (E + v \times B)$ [E] = m/s [B]V/m = Tm/s

<u>Electromagnetic Waves in Vacuum</u> Maxwell's Equations in empty space,

$\nabla \cdot \mathbf{E} = 0$ and $\nabla \cdot \mathbf{B} = 0$

 $\nabla \mathbf{x} \mathbf{E} = -\partial \mathbf{B} / \partial t$; $\nabla \mathbf{x} \mathbf{B} = \mu_0 \epsilon_0 \partial \mathbf{E} / \partial t$

We'll construct the general *polarized plane wave solution*

 $\mathbf{E}(\mathbf{x},t) = \mathbf{E}_{\mathbf{0}} \exp[i(\mathbf{k} \cdot \mathbf{x} - \omega t)]$

This is an idealized mathematical solution; the wave fronts are infinite planes perpendicular to **k**; and perfectly polarized (i.e., the direction of oscillation is constant).

Important: the polarized plane waves are a <u>complete set</u> of solutions.

Complex exponentials

 $\exp(i \theta) = \cos(\theta) + i \sin(\theta)$ (Euler)

or A exp (i θ) = |A| {cos (θ +d) + i sin(θ +d)} where A=|A| exp(id).

Of course **E** must be a real function. But is is more convenient to solve the equations using complex exponential functions. Just remember, the physical solution is the **Real Part** of the complex solution.

At the end of the calculation we take the real part to get the physical solution.

 $\mathbf{E}(\mathbf{x},t) = \mathbf{E}_{\mathbf{0}} \cos \left(\mathbf{k} \cdot \mathbf{x} - \omega t\right)$

$$\frac{H_{1,2}/2}{Pdarized plane wave}$$

$$\frac{H_{1,2}/2}{E(\vec{x},t) = \vec{E}_{0} e^{i(\vec{k}\cdot\vec{x}-\omega t)}$$
• Har monic time dynamic ; period $T = \frac{2r}{\omega}$
• Propagation with duction $g \vec{K}$.
• Propagation with $dwe divertian g \vec{K}$.
• Wavelength $\lambda = \frac{2r}{k}$
 $e^{ik(x_{11}+\lambda)} = e^{ikx_{11}} e^{2\pi i} = e^{ikx_{11}}$
• Prese velocity
 $\vec{L} \cdot \vec{x} - \omega t = constant$
 $k \cdot \lambda y_{1} - \omega t = 0$

$$V_{phase} = \frac{\Delta x_{11}}{\Delta t} = \frac{\omega}{k}$$

 $\begin{array}{l} \underline{\mathsf{Maxwell's equations must be satisfied}}\\ \mathbf{E}(\mathbf{x},t) = \mathbf{E}_0 \exp[i (\mathbf{k} \cdot \mathbf{x} - \omega t)]\\ \textbf{(1) } \nabla \cdot \mathbf{E} = 0\\ i\mathbf{k} \cdot \mathbf{E}_0 \exp[i (\mathbf{k} \cdot \mathbf{x} - \omega t)] = 0\\ \mathbf{k} \cdot \mathbf{E}_0 = 0;\\ \end{array}$ The electric field oscillates in a direction perpendicular to the direction of propagation; electromagnetic waves are *transverse waves*; the *polarization direction*.

(3) $\nabla \mathbf{x} \mathbf{E} = -\partial \mathbf{B} / \partial \mathbf{t}$

Or,

i**k** x **E**₀ exp[i (**k**·x - ω t)] = $-\partial$ **B** / ∂ t **B** = (**k** x **E**₀ / ω) exp[i (**k**·x - ω t)]

 $\mathbf{B} = \mathbf{B}_{\mathbf{0}} \exp[i(\mathbf{k} \cdot \mathbf{x} - \omega t)]$ and $\mathbf{B}_{\mathbf{0}} = \mathbf{k} \times \mathbf{E}_{\mathbf{0}} / \omega$

Note that **k**, **E**₀ and **B**₀ form an orthogonal triad of vectors. Also, $\mathbf{E}_{0} \times \mathbf{B}_{0} = \mathbf{k} \mathbf{E}_{0}^{2} / \omega$

(3) ∇·**B** = 0

This equation is already satisfied because $\nabla \cdot \mathbf{B} = i\mathbf{k} \cdot \mathbf{B}_{\mathbf{0}} \exp[i(\mathbf{k} \cdot \mathbf{x} - \omega t)]$ and **k** and **B**₀ are perpendicular.

(4) $\nabla \mathbf{x} \mathbf{B} = \mu_0 \varepsilon_0 \partial \mathbf{E} / \partial \mathbf{t}$

i **k** x **B**₀ = $\mu_0 \varepsilon_0$ (-i ω **E**₀)

 $\mathbf{k} \times \mathbf{B}_{\mathbf{0}} = \mathbf{k} \times (\mathbf{k} \times \mathbf{E}_{\mathbf{0}}) / \omega = -\mathbf{k}^2 \mathbf{E}_{\mathbf{0}} / \omega$

Thus, $k^2 / \omega = \mu_0 \varepsilon_0 \omega$

 $\omega = c k$ where $c = 1/(\mu_0 \varepsilon_0)^{1/2}$

Exercise. Show that $B_0 = E_0 / c$.

[Units: $T = (V/m) / (m/s) = Vs / m^2$]

11 2/4

Electromagnetic waves in vacuum $v_{phase} = \omega / k = 1 / (\mu_0 \epsilon_0)^{1/2} = c$ $v_{group} = d\omega / dk = 1/(\mu_0 \epsilon_0)^{1/2} = c$

c = $1/(\mu_0 \varepsilon_0)^{1/2} = 3.00 \times 10^8 \text{ m/s}$

- All wavelengths have the same speed.
- The wave speed does not depend on the frame of reference (A. Einstein). This assumes that Maxwell's equations have the same form in all inertial frames (theory of relativity).
- $B_0 = E_0/c$ independent of wavelength

The solution constructed here is called the *polarized plane wave solution*.

It is an idealized e.m. wave: perfectly polarized and coherent.

The wave fronts are infinite planes perpendicular to k ("coherence").

The electric field oscillates only in one direction ("polarized"); the magnetic field oscillates in a perpendicular direction.

The polarized plane wave solution

- **E x B** is everywhere in the direction of **k**.
 - (= direction of flow of energy)
- On any plane perpendicular to k, E(x,t) and B(x,t) are independent of x ("coherence") (and oscillating in t).

Completeness

The ideal polarized plane waves are important because the are a *complete set of solutions* to Maxwell's equations (in vacuum).

Superposition principle

Any solution can be written as a superposition of plane waves.

Example. A finite pulse of light (a "flash") would be an outgoing spherical wave with radius r = c tand finite thickness δr . That can be written as a superposition of plane waves.

The fact that any solution of Maxwell's equations can be written as a superposition of plane waves is an example of *Fourier's Theorem.* Polarized plane waves

F x B is everywhere in the direction of

11,2/6

- wave fronts are planes spanned by E and R

E,

That can be written as a superposition of plane waves.