Electric and magnetic units ...

$$
F=q(E+v x B)
$$

$$
[\mathrm{E}]=\mathrm{m} / \mathrm{s}[\mathrm{~B}]
$$

$$
\mathrm{V} / \mathrm{m}=\mathrm{Tm} / \mathrm{s}
$$

Electromagnetic Waves in Vacuum

Maxwell's Equations in empty space,
$\nabla \cdot \mathbf{E}=0 \quad$ and $\quad \nabla \cdot B=0$
$\nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial \mathrm{t} ; \nabla \times \mathbf{B}=\mu_{0} \varepsilon_{0} \partial \mathbf{E} / \partial \mathrm{t}$

We'll construct the general polarized plane wave solution

$$
E(\mathbf{x}, \mathrm{t})=\mathrm{E}_{0} \exp [i(\mathbf{k} \cdot \mathbf{x}-\omega t)]
$$

This is an idealized mathematical solution; the wave fronts are infinite planes perpendicular to \mathbf{k}; and perfectly polarized (i.e., the direction of oscillation is constant).
Important: the polarized plane waves are a complete set of solutions.

Complex exponentials

$$
\exp (i \theta)=\cos (\theta)+i \sin (\theta)
$$

or
$A \exp (i \theta)=|A|\{\cos (\theta+d)+i \sin (\theta+d)\}$
where
$A=|A| \exp (i d)$.

Of course E must be a real function. But is is more convenient to solve the equations using complex exponential functions. Just remember, the physical solution is the Real Part of the complex solution.
At the end of the calculation we take the real part to get the physical solution.

$$
E(x, t)=E_{0} \cos (k \cdot x-\omega t)
$$

Polarized plane ware

$$
\vec{E}(\vec{x}, t)=\vec{E}_{0} e^{i(\vec{l} \cdot \vec{x}-\omega t)}
$$

- Harmonic tire dependence; period $T=\frac{2 \pi}{\omega}$
- Propagation wi the diction of \vec{k}.

- Wavelength $\lambda=\frac{2 \pi}{k}$

$$
e^{i k\left(x_{11}+\lambda\right)}=e^{i k x_{11}} \underbrace{e^{2 \pi i}}_{1}=e^{i k x_{11}}
$$

- Phase velocity

$$
\begin{aligned}
& \vec{k} \cdot \vec{x}-\omega t=\text { constant } \\
& k x_{11}-\omega t=\text { constant } \\
& k \Delta x_{11}-\omega \Delta t=0 \\
& v_{\text {phase }}= \frac{\Delta x_{11}}{\Delta t}=\frac{\omega}{k}
\end{aligned}
$$

Maxwell's equations must be satisfied

$$
E(\mathbf{x}, \mathrm{t})=\mathrm{E}_{0} \exp [\mathrm{i}(\mathbf{k} \cdot \mathbf{x}-\omega \mathrm{t})]
$$

(1) $\nabla \cdot \mathbf{E}=0$

$$
\begin{aligned}
& i \mathbf{k} \cdot E_{0} \exp [i(\mathbf{k} \cdot \mathbf{x}-\omega t)]=0 \\
& \mathbf{k} \cdot E_{0}=\mathbf{0} ;
\end{aligned}
$$

The electric field oscillates in a direction perpendicular to the direction of propagation; electromagnetic waves are transverse waves; the polarization direction.
(3) $\nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial \mathrm{t}$
$i \mathbf{k} \times \mathbf{E}_{0} \exp [i(\mathbf{k} \cdot \mathbf{x}-\omega \mathrm{t})]=-\partial \mathbf{B} / \partial \mathrm{t}$
$\mathbf{B}=\left(\mathbf{k} \times \mathbf{E}_{0} / \omega\right) \exp [\mathrm{i}(\mathbf{k} \cdot \mathbf{x}-\omega \mathrm{t})]$
Or,

$$
\mathbf{B}=\mathbf{B}_{0} \exp [\mathbf{i}(\mathbf{k} \cdot \mathbf{x}-\omega t)] \text { and } \mathbf{B}_{0}=\mathbf{k} \times \mathbf{E}_{0} / \omega
$$

Note that $\mathbf{k}, \mathbf{E}_{\mathbf{0}}$ and $\mathbf{B}_{\mathbf{0}}$ form an orthogonal triad of vectors. Also, $\quad E_{0} \times \mathbf{B}_{\mathbf{0}}=\mathbf{k} E_{0}{ }^{2} / \omega$
(3) $\nabla \cdot \mathbf{B}=0$

This equation is already satisfied because $\nabla \cdot \mathbf{B}=\mathbf{i k} \cdot \mathbf{B}_{\mathbf{0}} \exp [\mathbf{i}(\mathbf{k} \cdot \mathbf{x}-\omega \mathrm{t})]$ and \mathbf{k} and $\mathbf{B}_{\mathbf{0}}$ are perpendicular.
(4) $\nabla \times \boldsymbol{B}=\mu_{0} \varepsilon_{0} \partial \mathbf{E} / \partial \mathrm{t}$

$$
\begin{aligned}
& i \mathbf{k} \times \mathbf{B}_{0}=\mu_{0} \varepsilon_{0}\left(-i \omega \mathbf{E}_{0}\right) \\
& \quad \mathbf{k} \times \mathbf{B}_{0}=\mathbf{k} \mathbf{x}\left(\mathbf{k} \times \mathbf{E}_{0}\right) / \omega=-\mathrm{k}^{2} \mathbf{E}_{0} / \omega
\end{aligned}
$$

Thus, $\quad \mathrm{k}^{2} / \omega=\mu_{0} \varepsilon_{0} \omega$
$\omega=c k$ where $c=1 /\left(\mu_{0} \varepsilon_{0}\right)^{1 / 2}$

Exercise.

Show that $B_{\theta}=E_{\theta} / C$.
[Units: $\left.T=(\mathrm{V} / \mathrm{m}) /(\mathrm{m} / \mathrm{s})=\mathrm{Vs} / \mathrm{m}^{2}\right]$

Electromagnetic waves in vacuum
$v_{\text {phase }}=\omega / k=1 /\left(\mu_{0} \varepsilon_{0}\right)^{1 / 2}=c$
$v_{\text {group }}=d \omega / d k=1 /\left(\mu_{0} \varepsilon_{0}\right)^{1 / 2}=c$
$\mathrm{c}=1 /\left(\mu_{0} \varepsilon_{0}\right)^{1 / 2}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$

- All wavelengths have the same speed.
- The wave speed does not depend on the frame of reference (A. Einstein). This assumes that Maxwell's equations have the same form in all inertial frames (theory of relativity).
- $\mathrm{B}_{0}=\mathrm{E}_{0} / \mathrm{c}$
independent of wavelength

The solution constructed here is called the polarized plane wave solution.

It is an idealized e.m. wave: perfectly polarized and coherent.

The wave fronts are infinite planes perpendicular to k ("coherence").

The electric field oscillates only in one direction ("polarized"); the magnetic field oscillates in a perpendicular direction.

The polarized plane wave solution

- E x B is everywhere in the direction of k.
(= direction of flow of energy)
- On any plane perpendicular to k, $E(x, t)$ and $\mathbf{B}(x, t)$ are independent
of x ("coherence") (and
oscillating in t).

Completeness

The ideal polarized plane waves are important because the are a complete set of solutions to Maxwell's equations (in vacuum).

Superposition principle

Any solution can be written as a superposition of plane waves.

Example. A finite pulse of light (a "flash") would be an outgoing spherical wave with radius $r=c t$ and finite thickness δ r.

That can be written as a superposition of plane waves.

The fact that any solution of Maxwell's equations can be written as a superposition of plane waves is an example of Fourier's Theorem.

That can be written as a superposition of plane waves.

