
We’ll treat the charge and current in 

atoms by averaging --- a good 

approximation because N is so large;

error ~ 1/ √N ~ 1/ √(6x1023) ~ 1/ 1012

Two of Maxwell’s equations do not 

depend on matter:

(2) ∇·B = 0
(primary magnetic monopoles do not exist)

(3) ∇×E = −∂B/∂t
(EM induction is a field effect)

The other two depend on sources, i.e., 

matter, for which we’ll make 

macroscopic approximations.

Maxwell’s Equations in Matter
Start with the fundamental equations

(1) ∇·E = ρ/ε
0

(2) ∇·B = 0

(3) ∇ × E = −∂B/∂t

(4) ∇ × B = μ
0
J + μ

0
ε
0
 ∂E/∂t

where ρ(x,t) and J(x,t) satisfy the 

continuity equation,

∇·J = −∂ρ/∂t

(conservation of charge)

Now consider the effects of macroscopic 

matter; i.e., matter with many atoms (6 

x 1023 per mole).



Charge density

ρ
micro

(x,t)=∑ e
i
 δ3(x-x

i
(t))

         i=1..N

or, in quantum theory,

ρ
micro

(x,t)=∑ e
i
 |ψ

i
(x,t)|2

i=1..N

where N ~ 6 x 1023

Now define the macroscopic average,

ρ(x,t) = (1/δV) ∫δV ρmicro(x’,t)d
3x’

where δV is a volume around the point 
x, both large and small :
-- large compared to an atom
-- small compared to the full system

Recall the methods for dielectric 
materials.

ρ(x,t) = ρ
free

(x,t) + ρ
bound

(x,t)

free charge is charge that is not bound 
in atoms or molecules;
bound charge is charge that is confined 
to an atom or molecule.

Review:

ρ
bound

(x,t) = −∇·P

P = polarization = electric dipole 

moment density

P(x,t) = n(x,t) ⟨p⟩



Gauss’s Law for the electric field E(x,t)

∇·E = ρ
free

/ε
0
 + ρ

bound
/ε

0
 = ρ

free
/ε

0
 − ∇·P/ε

0

∇·(ε
0
E + P) = ρ

free

Define the displacement field D = ε
0
E + P ; then

∇·D = ρ
free

.

But we will need a “constitutive equation” to relate E(x,
t) and D(x,t).

For linear dielectrics,
D = εE    or    P = ε

0
χ
e
E

(permittivity or susceptibility)

All of this is familiar for static fields. It is a good 
enough approximation for time dependent fields, unless 
photon energy > ~keV.
However, even for low photon energies, ε may depend on 
frequency. 



Electric current density
The fundamental field equation is

∇ × B = μ
0
J + μ

0
ε
0
 ∂E/∂t

Now, what is current density J(x,t)?

Any process that moves charge 
contributes to the current density.

Again, we separate free current and 
bound current.

J = J
free

 + J
magnetization

 + J
polarization

In Chapter 9 we considered bound 

current that is related to the 

magnetization M(x,t),

J
magn.

 = ∇ × M ;   M(x,t) = n(x,t) ⟨m⟩

This is current inside an atom (or 

molecule) which gives the atom a 

magnetic dipole moment m.

But now, for time-dependent systems, 

there is another kind of bound current 

related to the polarization P(x,t),

Jpol. = ∂P/∂t;   P(x,t) = n(x,t) ⟨p⟩

Result:   J = J
free

 + ∇ × M + ∂P/∂t



Result:   J = J
free

 + ∇ × M + ∂P/∂t

Theorem.  ∇·J = −∂ρ/∂t

(continuity equation)

Proof.

∇·J = ∇·J
free

 + ∇·(∇×M) + ∇·(∂P/∂t)

= − ∂ρ
free

/∂t + 0 + ∂(−ρ
bound

)/∂t

= − ∂ρ/∂t

Q.E.D.

The Ampere-Maxwell equation in the 
presence of matter.

∇ × B = μ
0
J + μ

0
ε
0
 ∂E/∂t

= μ
0
(J

free
 + ∇×M + ∂P/∂t) + μ

0
ε
0
 ∂E/∂t

∇×(B/μ
0
−M) = J

free
 + ∂(ε

0
E + P) /∂t

(4) ∇ × H =  J
free

 + ∂D /∂t

where H = B/μ
0
−M   and   D = ε

0
E + P

displacement current = ∂D /∂t

Constitutive equations for linear magnetic 

materials (diamagnetic or paramagnetic): 

B = μH  or  M = μ
0
χ
m
B



Maxwell’s Equations, including the 
atomic effects of magnetization and 
polarization in macroscopic matter...

(1) ∇·D = ρ
free

(2) ∇·B = 0

(3) ∇ × E = −∂B/∂t

(4) ∇ × H =  J
free

 + ∂D /∂t

D = ε
0
E + P = ε E

B = μ
0
(H + M) = μ H

Consequences for energy density and 
energy flux (see Section 11.X)

The energy density, which includes both 

field energy and material energies, is

u = ½ ( E·D + B·H )

The energy flux is

S = E × H 

Exercise 11.X. The continuity equation 

for energy conservation is

∇·S = −∂B/∂t − J
free

·E


