Electromagnetism and Relativity

 (Chapter 12)We live in a 4-dimensional spacetime. Events (e.g., measurements) are observed with respect to coordinates; space (x, y, z) and time (t).

This frame of reference is called an inertial frame if the "Law of inertia" holds true in terms of these coordinates.

4-vector notation

$$
x^{\mu}=\left(\begin{array}{l}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right)=\left(\begin{array}{l}
c t \\
x \\
y \\
z
\end{array}\right)
$$

which can be confusing: sometimes x^{μ} means a 4 -vector; but other times x^{μ} means the μ component of a vector.

Recall 3-vectors:
$\mathbf{x}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$
x^{i} is a notation for the i - th component of \mathbf{x} $x^{1}=x ; x^{2}=y ; x^{3}=z$
μ, v, λ, \ldots greek letters $=0,1,2,3$
$\mathrm{i}, \mathrm{j}, \mathrm{k}, \ldots$ roman letters $=1,2,3$

Einstein's Postulates
 of Special Relativity

(1) The laws of physics have the same form in all inertial frames.
(2) The speed of light in free space
is the same in all inertial frames;
$c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Lorentz transformations

(The equations were first published by Lorentz; they were given a more profound interpretation by A. Einstein.)
Consider two inertial frames,
IF : (ct, x, y, z)
IF': (ct', $\left.x^{\prime}, y^{\prime}, z^{\prime}\right)$
Assume that \mathbb{F} 'moves with velocity vi with respect to .IF
(Later we'll generalize the results for v in an arbitrary direction.)

If and IF.

The position of 0^{\prime} (the origin of F^{\prime})
is \mathbf{x}_{0}, with respect to \boldsymbol{F}; $\mathbf{x}_{0},(\mathrm{t})=\mathrm{v} \mathrm{t}$.
Exercise.
Derive the transformation $\mathrm{x}^{\mu} \rightarrow \mathrm{x}^{\prime \mu}$.
I.e., given the coordinates of an event in \mathbb{I}, what are the coordinates of the same event
in \mathbb{I} '?
Assume it is linear, so
$\mathrm{X}^{\prime \mu}=\sum_{\mathrm{v}=0}{ }^{3} \Lambda^{\mu}{ }_{v} \mathrm{X}^{v} \quad$ (matrix-vector notation)

$$
\begin{aligned}
& c t^{\prime}=\Lambda_{0}^{0} c t+\Lambda_{0}^{0}{ }_{1} x+\Lambda^{0}{ }_{2} y+\Lambda^{0}{ }_{3} z \\
& x^{\prime}=\Lambda_{0}^{1} c t+\Lambda_{1}{ }_{1} x+\Lambda^{1}{ }_{2} y+\Lambda_{3}^{1} z \\
& y^{\prime}=\Lambda^{2}{ }_{0} c t+\Lambda^{2}{ }_{1} x+\Lambda^{2} y+\Lambda^{2}{ }_{3} z \\
& z^{\prime}=\Lambda^{3}{ }_{0} c t+\Lambda^{3}{ }_{1} x+\Lambda^{3}{ }_{2} y+\Lambda^{3}{ }_{3} z
\end{aligned}
$$

(The matrix notation is so much simpler. We will need to get used to 4vector notations; this is also called tensor analysis.)

Galilean Relativity

$$
\begin{aligned}
& c t^{\prime}=c t \\
& x^{\prime}=x-v t \\
& y^{\prime}=y \\
& z^{\prime}=z
\end{aligned}
$$

(1) there is a universal time .
(2) $x^{\prime}=0$ means $x=v t$, as specified.

Spatial axes just translate without any scale change.
So what's wrong with this? The speed of light would not be constant.

Special Relativity

Try this ...

$$
\begin{aligned}
& c t^{\prime}=A_{1} c t+A_{2} x \\
& x^{\prime}=A_{3}(x-v t) \\
& y^{\prime}=y \\
& z^{\prime}=z
\end{aligned}
$$

Note: $\mathbf{x}^{\prime}=0$ means $\mathbf{x}=\mathbf{v t}$, as specified. \ldots and determine A_{1}, A_{2}, A_{3} to satisfy the postulate of the absolute speed of light.

Suppose

at the origin O^{\prime} at time $t^{\prime}=0$.

The light propagates outward at speed c, in either frame of reference.

- W.R.T. frame F^{\prime}

$$
\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^{1 / 2}=c t^{\prime}
$$ or

$x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=c^{2} \mathrm{t}^{\prime 2}$
outgoing spherical pulse

- W.R.T. frame \boldsymbol{F}

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=c^{2} t^{2} \quad \text { (same c }!\text {) } \tag{2}
\end{equation*}
$$

Substitute the Lorentz transformation into Eq. (1) and compare the result to Eq. (2).

$$
A_{3}{ }^{2}(x-v t)^{2}+y^{2}+z^{2}=\left(A_{1} c t+A_{2} x\right)^{2}
$$

so ...

$$
\begin{aligned}
c^{2} t^{2} & -x^{2}=\left(A_{1} c t+A_{2} x\right)^{2}-A_{3}^{2}(x-v t)^{2} \\
=\left(A_{1}^{2}\right. & \left.-A_{3}^{2} v^{2} / c^{2}\right) c^{2} t^{2} \\
& +\left(A_{1} A_{2}+A_{3}^{2} v / c\right) 2 c t x \\
& +\left(A_{2}^{2}-A_{3}^{2}\right) x^{2}
\end{aligned}
$$

Thus, we require,

$$
\begin{aligned}
& A_{1}^{2}-A_{3}^{2} v^{2} / C^{2}=1 \\
& A_{1} A_{2}+A_{3}^{2} v / c=0 \\
& A_{2}^{2}-A_{3}^{2}=-1
\end{aligned}
$$

Exercise: verify that the solution of these equations is

$$
\begin{aligned}
& A_{1}=A_{3}=\left(1-v^{2} / c^{2}\right)^{-1 / 2} \\
& \text { and } A_{2}=-(v / c)\left(1-v^{2} / c^{2}\right)^{-1 / 2}
\end{aligned}
$$

The Lorentz trunsformution f of \rightarrow of

$$
\begin{aligned}
c t^{\prime} & =\gamma\left(c t-\frac{v}{c} x\right) \quad \gamma=\frac{1}{\sqrt{1-v / c^{2}}} \\
x^{\prime} & =\gamma(x-v t) \\
y^{\prime} & =y \\
z^{\prime} & =z \\
T^{\prime} & \leftarrow \bar{J}
\end{aligned}
$$

The reverse transformation $\mathcal{F}^{\prime \prime} \rightarrow \mathcal{F}$

$$
\begin{aligned}
c t & =\gamma\left(c t^{\prime}+\frac{v}{c} x^{\prime}\right) \\
x & =\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y & =y^{\prime} \\
z & =z^{\prime} \\
\sigma & \leftarrow f^{\prime}
\end{aligned}
$$

Why? Becance of moves with veloaty -v \hat{z} w.r.t. \mathscr{q}^{\prime}. ($\vec{x}=0$ means $\vec{x}^{\prime}=-v_{\hat{\imath}} t^{\prime}$.) Origin $f^{\boldsymbol{q}}$. Change the sign of v.

For an arbitrary divectim of the relative velocity \vec{v}
Say ने moves welout \vec{v} w.r.t. the frame of, Then

$$
\begin{aligned}
& c t^{\prime}=\gamma\left(c t-\frac{v}{c} x_{11}\right) \\
& x_{11}^{\prime}=\gamma\left(x_{11}-v t\right) \\
& \vec{x}_{1}^{\prime}=\vec{x}_{1} \quad \quad \gamma=1 / \sqrt{1-v^{2} / c^{2}}
\end{aligned}
$$

The Lorentz contraction effect. A meter stick moves with velocity v along the x axis of inertial frame F.
Calculate the distance between the ends of the stick at a given time t (ie., for the same time t at both ends).
In the rest frame $\left(F^{\prime}\right)$ the length is $D^{\prime}=1$ meter.

$$
\mathrm{D}^{\prime}=\gamma(\Delta \mathrm{x}-\mathrm{v} \Delta \mathrm{t})
$$

Thus $\Delta x=D^{\prime} / \gamma=\left(1-v^{2} / c^{2}\right)^{1 / 2} D^{\prime}$
If $v=0.1 \mathrm{c}$ then $\Delta x=0.995 \mathrm{~m}$; if $\mathrm{v}=0.9 \mathrm{c}$ then $\Delta \mathrm{x}=0.436 \mathrm{~m}$.

