
The Electromagnetic Field Tensor - 
part I

Fμν(x)

Consider an arbitrary inertial frame

F : { ct, x, y, z }

How do we define the fields E(x,t) and B(x,t)?

The force on a test charge q is
dp /dt  =  F  =  q E + q u × B

where
u  =  velocity  =  dx /dt.

Recall:     p  =  mu  / √ 1−u2/c2

Now, by the principles of special relativity (the 

laws of physics are the same in all inertial 

frames) we should write the equations in 

covariant form; i.e., write the equations only in 

terms of Lorentz scalars, vectors and tensors.



Mathematics of Tensor Analysis

Definitions and Notations
Contravariant vectors : xμ ,  Aμ , ...
Covariant vectors :  xμ ,  Aμ , …
These are related by

xμ  =  gμν x
ν   ;    or,   Aμ  =  gμν A

ν

where we use the Einstein summation 
convention (so the sum over ν from 0 to 3 is 
implied). 

Here  gμν is the metric tensor
gμν  =  diag(1, −1, −1, −1);

note that
A0  =  A0

A1  =  −A1 ,  A2  =  −A2 ,  A3  =  −A3

“Raising and lowering the index”

(a0 , a1 , a2 , a3) = (a0 ,  −a1 ,  −a2 ,  −a3 )

Or, equivalently,  aμ  =  gμν a
ν    or    aμ  =  gμν aν

where   gμν = gμν .

Theorem 1. If Aμ and  Bμ are Lorentz vectors 

(contravariant) then Aμ Bμ
  is a scalar.

(* we always use the Einstein
summation convention, so Aμ Bμ 
means that we sum over μ from 0 to 3. *)

Note this tricky important point:
Aμ Bμ  has no index. 
μ is summed from 0 to 3.
 Aμ Bμ means the sum of four terms.



Proof #1.
Consider 2 inertial frames, F and F’ & relative 
velocity v .

Relative to frame F we have
Aμ Bμ = A0 B0 − A1 B1  − A2 B2  − A3 B3

(do you see why?)
= A0 B0 − Aǁ

 Bǁ  − A
⊥

 ∙ B
⊥

Now consider the Lorentz transformation…
A’μ B’μ = A’0 B’0 − A’ǁ

 B’ǁ  − A’
⊥

 ∙B’
⊥

= γ[A0 −(v/c)Aǁ] γ[B0 −(v/c)Bǁ]
 −γ[Aǁ−(v/c)A0] γ[Bǁ −(v/c)B0]  − A

⊥
 ∙B

⊥

= γ2A0B0 (1 − v2/c2) − γ2AǁBǁ (1 − v2/c2)  − A
⊥

 ∙B
⊥

= A0 B0 − Aǁ
 Bǁ  − A

⊥
 ∙B

⊥

= Aμ Bμ

Q. E. D.

Proof #2.
A’μ B’μ = gμν A’μ B’ν

(Λμ
ρ = the Lorentz transformation matrix)

= gμν   Λ
μ

ρAρ   Λν
σBσ

(Einstein summation convention for μ, ν,  ρ, σ)
= gμν Λ

μ
ρ Λν

σ  Aρ  Bσ

Exercise:  Prove that     gμν Λ
μ

ρ Λν
σ  = gρσ    .   

The metric tensor is the same in all inertial 
frames;     diag( 1, -1, -1, -1).

So…        A’μ B’μ = gρσ Aρ  Bσ = Aρ Bρ          (Q. E. D.)

Do you get this?

Aμ Bμ  does not depend on μ because μ is 
summed from 0 to 3 by the Einstein summation 
convention.
Aμ Bμ = A0 B0 − A1 B1  − A2 B2  − A3 B3

= Aν Bν = Aρ Bρ = Aξ Bξ

    Λ  g  Λ = g   `   



Theorem 2. If Aμ is a Lorentz vector and  Cμν is 
a Lorentz tensor, then  CμνAν is a Lorentz 
vector.

Proof. What do we need to prove? We need to 
prove that CμνAν transforms in the same was 
as xμ ; i.e., ( remember,  x’μ  = Λμ

ρ xρ  )

C’μνA’ν = Λμ
ρ CρνAν

(N. B. : the Einstein summation
convention applies to ρ and ν)

C’μνA’ν  =  gνλ  C’μνA’λ =  gνλ   Λ
μ

ρΛν
σCρσ  Λλ

κAκ

= Λμ
ρ  gσκ Cρσ

 A
κ  =  Λμ

ρ  Cρσ
 Aσ      (Q. E. D.)

Do you get this?
Ignoring the indices, this is how it goes...
C’A’ = g C’ A’ = g  ΛΛC  ΛA 

= Λ  ΛgΛ  CA = Λ  g  CA = Λ CA;
… but make sure the indices work out 
correctly!

Summary and generalizations

Contraction of ...

contravariant vector and covariant vector → 
scalar

contravariant tensor and covariant vector → 
contravariant vector

tensor of rank n and tensor of rank m → tensor 
of rank |n-m|

rank 1 � rank 1 = rank 0   (i.e., V � V = S)

rank 2 � rank 1 = rank 1   (i.e., T � V = V)

In general, T1  � T2  =  T3   where the rank of T3 is 
n3 = n1 + n2  − # of contracted indices

There are also tensors with mixed contravariant 

and covariant indices:   Tαβγ
λμν

That is the algebra of tensors.



The calculus of tensors

Theorem 4. The differential operator ∂/∂xμ , 

which we sometimes denote by ∂μ , 
transforms as a covariant vector.

Proof. Let φ(x) be a scalar function of xμ.
Now consider Φμ  ≡  ∂μ φ.
According to the theorem, it is a covariant 
vector. Or, equivalently,  Φμ is a contravariant 

vector. That’s what we have to prove.

Now watch carefully ...

Φ’μ = gμν Φ’ν = gμν   ∂/∂x’ν φ(x’)

=  gμν ∂/∂x’ν φ(x)            { because φ is a scalar }

=  gμν ∂φ/∂xρ      ∂xρ / ∂x’ν   
        { sum over ρ is implied!  }

=  gμν Φρ    [ Λ-1   ] ρν 
{ x’ = Λ x  implies  x = Λ-1 x’}

=  Λμ
σ gσρ   Φρ  

(recall:  Λ g Λ = g )
=   Λμ

σ Φ σ   
 
(Q. E. D.)
Consequences and generalizations

∂μ φ =   Φμ         vector

 ∂μ Gν  =   Tμν      tensor
Differentiation produces tensors from vectors.

Example: Let φ = gρσxρxσ  (a scalar);
then     ∂μ φ = gμσxσ + gρμxρ

= 2 gμλ x
λ  = 2 xμ

… a covariant vector, as claimed.


