The Electromagnetic Field Tensor part I
 $F^{\mu \mathrm{v}}(\mathrm{x})$

Consider an arbitrary inertial frame

$$
\boldsymbol{F}:\{\mathrm{ct}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}
$$

How do we define the fields $E(x, t)$ and $B(x, t)$?
The force on a test charge q is

$$
\mathrm{dp} / \mathrm{dt}=\mathbf{F}=\mathrm{q} \mathbf{E}+\mathrm{q} \mathbf{u} \times \mathbf{B}
$$

where

$$
\mathbf{u}=\text { velocity }=\mathrm{d} \mathbf{x} / \mathrm{dt} .
$$

Recall: $\mathbf{p}=\mathrm{mu} / \sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}$

Now, by the principles of special relativity (the laws of physics are the same in all inertial frames) we should write the equations in covariant form; i.e., write the equations only in terms of Lorentz scalars, vectors and tensors.

Mathematics of Tensor Analysis

Definitions and Notations
Contravariant vectors: $\mathrm{x}^{\mu}, \mathrm{A}^{\mu}, \ldots$
Covariant vectors: x_{μ}, A_{μ}, \ldots
These are related by

$$
x_{\mu}=g_{\mu v} x^{v} ; \text { or, } A_{\mu}=g_{\mu v} A^{v}
$$

where we use the Einstein summation
convention (so the sum over v from 0 to 3 is implied).

Here $g_{\mu v}$ is the metric tensor

$$
\mathrm{g}_{\mathrm{\mu v}}=\operatorname{diag}(1,-1,-1,-1) ;
$$

note that

$$
\begin{aligned}
& A_{0}=A^{0} \\
& A_{1}=-A^{1}, A_{2}=-A^{2}, A_{3}=-A^{3}
\end{aligned}
$$

"Raising and lowering the index"
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=\left(a^{0},-a^{1},-a^{2},-a^{3}\right)$
Or, equivalently, $a_{\mu}=g_{\mu v} a^{v}$ or $a^{\mu}=g^{\mu v} a_{v}$ where $g^{\mu \mathrm{v}}=g_{\mu \mathrm{v}}$.

Theorem 1. If A^{μ} and B^{μ} are Lorentz vectors
(contravariant) then $A^{\mu} B_{\mu}$ is a scalar.
(* we always use the Einstein summation convention, so $A^{\mu} B_{u}$ means that we sum over μ from 0 to 3. *)

Note this tricky important point:
$\mathrm{A}^{\mu} \mathrm{B}_{\mu}$ has no index.
μ is summed from 0 to 3 .
$\mathrm{A}^{\mu} \mathrm{B}_{\mu}$ means the sum of four terms.

Proof \#1.

Consider 2 inertial frames, \boldsymbol{F} and $\boldsymbol{F}^{\prime} \&$ relative velocity \mathbf{v}.

Relative to frame F we have

$$
\begin{aligned}
& \mathrm{A}^{\mu} \mathrm{B}_{\mu}=\mathrm{A}^{0} \mathrm{~B}^{0}-\mathrm{A}^{1} \mathrm{~B}^{1}-\mathrm{A}^{2} \mathrm{~B}^{2}-\mathrm{A}^{3} \mathrm{~B}^{3} \\
& \quad \text { (do you see why?) } \\
& =\mathrm{A}^{0} \mathrm{~B}^{0}-\mathrm{A}_{\|} \mathrm{B}_{\|}-\mathbf{A}_{\perp} \cdot \mathbf{B}_{\perp}
\end{aligned}
$$

Now consider the Lorentz transformation...

$$
\begin{aligned}
& \mathrm{A}^{\prime \mu} \mathrm{B}_{\mu}^{\prime}=\mathrm{A}^{\prime 0} \mathrm{~B}^{\prime 0}-\mathrm{A}_{1}^{\prime} \mathrm{B}_{\|}^{\prime}-\mathrm{A}_{\perp}^{\prime} \cdot \mathrm{B}_{\perp}^{\prime} \\
& =\gamma\left[A^{0}-(\mathrm{v} / \mathrm{c}) \mathrm{A}\right] \mathrm{\gamma}\left[\mathrm{~B}^{0}-(\mathrm{v} / \mathrm{c}) \mathrm{B}\right] \\
& -\gamma\left[A_{1}-(v / c) A^{0}\right] \gamma\left[B_{\|}-(v / c) B^{0}\right]-A_{\perp} \cdot B_{\perp} \\
& =\gamma^{2} A^{0} B^{0}\left(1-v^{2} / c^{2}\right)-\gamma^{2} A_{1} B_{1}\left(1-v^{2} / c^{2}\right)-A_{\perp} \cdot B_{\perp} \\
& =A^{0} B^{0}-A_{1} B_{\|}-A_{\perp} \cdot B_{\perp} \\
& =A^{\mu} B_{\mu}
\end{aligned}
$$

Q. E. D.

Proof \#2.

$$
\begin{aligned}
& A^{\prime \mu} B_{\mu}^{\prime}=g_{\mu v} A^{\prime \mu} B^{\prime v} \\
& =g_{\mu v} \Lambda_{\rho}^{\mu} A^{\rho} \Lambda^{\mu} \Lambda_{\rho}^{v}{ }_{\sigma} B^{\sigma} \\
& =g_{\mu v} \Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{v}{ }_{\sigma} A^{\rho} B^{\sigma}
\end{aligned}
$$

Exercise: Prove that $g_{\mu v} \Lambda^{\mu}{ }_{\rho} \Lambda^{\nu}{ }_{\sigma}=g_{\rho \sigma}$

The metric tensor is the same in all inertial frames; $\operatorname{diag}(1,-1,-1,-1)$.

So...

$$
\begin{equation*}
A^{\prime \mu} B_{\mu}^{\prime}=g_{\rho \sigma} A^{\rho} B^{\sigma}=A^{\rho} B_{\rho} \tag{Q.E.D.}
\end{equation*}
$$

Do you get this?
$A^{\mu} B_{\mu}$ does not depend on μ because μ is summed from 0 to 3 by the Einstein summation convention.

$$
\begin{aligned}
A^{\mu} B_{\mu} & =A^{0} B^{0}-A^{1} B^{1}-A^{2} B^{2}-A^{3} B^{3} \\
& =A^{v} B_{v}=A^{\rho} B_{\rho}=A^{\varepsilon} B_{\xi}
\end{aligned}
$$

Theorem 2. If A^{μ} is a Lorentz vector and $C^{\mu v}$ is a Lorentz tensor, then $\mathrm{C}^{\mathrm{uv}} \mathrm{A}_{\mathrm{v}}$ is a Lorentz vector.

Proof. What do we need to prove? We need to prove that $\mathrm{C}^{\mu \mathrm{v}} \mathrm{A}_{\mathrm{v}}$ transforms in the same was as x^{μ}; i.e., (remember, $x^{\prime \mu}=\Lambda^{\mu}{ }_{\rho} x^{\rho}$)

$$
C^{\prime \mu v} A_{v}^{\prime}=\Lambda_{\rho}^{\mu} C^{\rho v} A_{v}
$$

(N. B. : the Einstein summation convention applies to ρ and v)

$$
\begin{align*}
\mathrm{C}^{\prime \mu \mathrm{v}} \mathrm{~A}_{\mathrm{v}}^{\prime} & =\mathrm{g}_{\mathrm{V} \lambda} \mathrm{C}^{\prime \mu \mathrm{v}} \mathrm{~A}^{\prime \lambda}=\mathrm{g}_{\mathrm{v} \lambda} \Lambda^{\mu}{ }_{\rho} \Lambda^{\mathrm{v}}{ }_{\sigma} \mathrm{C}^{\rho \sigma} \Lambda_{\mathrm{K}}^{\lambda} A^{\mathrm{K}} \\
& =\Lambda^{\mu}{ }_{\rho} \mathrm{g}_{\sigma \mathrm{K}} \mathrm{C}^{\rho \sigma} \mathrm{A}^{\mathrm{K}}=\Lambda_{\rho}^{\mu}{ }_{\rho}^{\rho \sigma} \mathrm{C}_{\sigma} \quad \text { (Q. E. } \tag{Q.E.D.}
\end{align*}
$$

Do you get this?
Ignoring the indices, this is how it goes...
$C^{\prime} A^{\prime}=g C^{\prime} A^{\prime}=g \Lambda \Lambda C \Lambda A$

$$
=\Lambda \Lambda \mathrm{g} \Lambda \mathrm{CA}=\Lambda \mathrm{g} \mathrm{CA}=\Lambda \mathrm{CA} ;
$$

... but make sure the indices work out correctly!

Summary and generalizations

Contraction of ...
contravariant vector and covariant vector \rightarrow scalar
contravariant tensor and covariant vector \rightarrow contravariant vector
tensor of rank n and tensor of rank $\mathrm{m} \rightarrow$ tensor of rank $|n-m|$
rank $1 \square \operatorname{rank} 1=$ rank 0 (i.e., $\mathrm{V} \square \mathrm{V}=\mathrm{S}$)
rank $2 \square \operatorname{rank} 1=\operatorname{rank} 1$ (i.e., $\mathrm{T} \square \mathrm{V}=\mathrm{V}$)
In general, $T_{1} \square T_{2}=T_{3}$ where the rank of T_{3} is $\mathrm{n}_{3}=\mathrm{n}_{1}+\mathrm{n}_{2}-\#$ of contracted indices
There are also tensors with mixed contravariant and covariant indices: $\mathrm{T}_{\alpha \beta \gamma} \lambda \mu v$
That is the algebra of tensors.

The calculus of tensors

Theorem 4. The differential operator $\partial / \partial x^{\mu}$, which we sometimes denote by ∂_{μ}, transforms as a covariant vector.

Proof. Let $\varphi(\mathrm{x})$ be a scalar function of x^{μ}.
Now consider $\Phi_{\mu} \equiv \partial_{\mu} \varphi$.
According to the theorem, it is a covariant vector. Or, equivalently, Φ^{μ} is a contravariant vector. That's what we have to prove.

$$
\begin{aligned}
& \text { Example: Let } \varphi=g_{\rho 0} x^{\rho} x^{\sigma} \text { (a scalar); } \\
& \text { then } \quad \begin{aligned}
\partial_{\mu} \varphi & \varphi g_{\mu \sigma} x^{\sigma}+g_{\mu \mu} x^{\rho} \\
= & 2 g_{\mu \lambda} x^{\lambda}=2 x_{\mu} .
\end{aligned}
\end{aligned}
$$

... a covariant vector, as claimed.

Now watch carefully

$$
\begin{aligned}
& \Phi^{\prime \mu}=g^{\mu \mathrm{v}} \Phi_{\mathrm{v}}^{\prime}=\mathrm{g}^{\mathrm{\mu v}} \quad \partial / \partial \mathrm{x}^{\prime \mathrm{v}} \varphi\left(\mathrm{x}^{\prime}\right) \\
& =g^{\mu v} \partial / \partial x^{\prime v} \varphi(x) \quad\{\text { because } \varphi \text { is a scalar }\} \\
& =g^{\mu v} \partial \varphi / \partial x^{\rho} \quad \partial x^{\rho} / \partial x^{\prime v} \\
& \text { \{ sum over } \rho \text { is implied! \} } \\
& =g^{\mathrm{hv}} \Phi_{\rho}\left[\Lambda^{-1}\right]_{\mathrm{v}}^{\rho} \\
& \left\{\mathrm{x}^{\prime}=\Lambda \mathrm{x} \text { implies } \mathrm{x}=\Lambda^{-1} \mathrm{x}^{\prime}\right\} \\
& =\Lambda_{\sigma}^{\mu} g^{\sigma \rho} \Phi_{\rho} \\
& \text { (recall: } \Lambda \mathrm{g} \Lambda=\mathrm{g} \text {) } \\
& =\Lambda^{\mu}{ }_{\sigma} \Phi^{\sigma}
\end{aligned}
$$

(Q. E. D.)

Consequences and generalizations

$$
\begin{array}{ll}
\partial_{\mu} \varphi=\Phi_{\mu} & \text { vector } \\
\partial_{\mu} G_{v}=T_{\mu v} & \text { tensor }
\end{array}
$$

Differentiation produces tensors from vectors.

