Electric and magnetic field

transformations
Consider inertial frames F ' and F. Suppose we know the electric and magnetic fields, $E^{\prime}\left(x^{\prime}, t^{\prime}\right)$ and $B^{\prime}\left(x^{\prime}, t^{\prime}\right)$, as observed in frame F,

Then what are the electric and magnetic fields, $\mathbf{E}(\mathbf{x}, \mathrm{t})$ and $\mathbf{B}(\mathbf{x}, \mathrm{t})$, as observed in frame F ?

Suppose F^{\prime} moves with velocity \mathbf{v} relative to F. WLOG, take \mathbf{v} to be in the x direction; $\mathbf{v}=\mathrm{vi}$.

Picture:

Fields are present, which are measured, by the forces that they produce, with respect to the two different frames of reference, F and F^{\prime}.

Electric and magnetic field

transformations

To figure out $\mathbf{E}(\mathbf{x}, \mathrm{t})$ and $\mathbf{B}(\mathrm{x}, \mathrm{t})$:
(1) We already know the field tensor
$F^{\prime \mu \nu}$ for the inertial frame F^{\prime}.
(2) We know how to transform the field tensor,

$$
F^{\mu \nu}=\Lambda_{\rho}^{\mu} \Lambda_{\sigma}^{v} F^{\prime \rho \sigma}
$$

where Λ_{p}^{μ} is the Lorentz transformation matrix.
(3) Finally deconstruct $\mathrm{F}^{\mu \nu}$ into $\mathrm{E}(\mathrm{x}, \mathrm{t})$ and $B(x, t)$.
(1)

$\mathrm{F}^{\mu v}=$| 0 | $\mathrm{E}_{\mathrm{x}}^{\prime} / \mathrm{c}$ | $\mathrm{E}_{\mathrm{y}}^{\prime} / \mathrm{c}$ | $\mathrm{E}_{\mathrm{z}}^{\prime} / \mathrm{E}$ |
| :---: | :---: | :---: | :---: |
| $-\mathrm{E}_{\mathrm{x}}^{\prime} / \mathrm{c}$ | 0 | $\mathrm{~B}_{\mathrm{z}}^{\prime}$ | $-\mathrm{B}_{\mathrm{y}}^{\prime}$ |
| $-\mathrm{E}_{\mathrm{y}}^{\prime} / \mathrm{c}$ | $-\mathrm{B}_{\mathrm{z}}^{\prime}$ | 0 | $\mathrm{~B}_{\mathrm{x}}^{\prime}$ |
| $-\mathrm{E}_{\mathrm{z}}^{\prime} / \mathrm{c}$ | $\mathrm{B}_{\mathrm{y}}^{\prime}$ | $-\mathrm{B}_{\mathrm{x}}^{\prime}$ | 0 |

(2) $x^{\mu}=\Lambda^{\mu}{ }_{\rho} x^{\prime p} ; F^{\mu \nu}=\Lambda^{\mu}{ }_{\rho} \Lambda^{v}{ }_{\sigma} F^{p \rho}$

$$
\Lambda_{\rho}^{\mu}=\begin{array}{llll}
\gamma & \gamma \mathrm{V} / \mathrm{c} & 0 & 0 \\
\gamma \mathrm{~V} / \mathrm{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}
$$

(3)

$$
\begin{aligned}
& \left\{\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}} \mathrm{E}_{\mathrm{z}}\right\}=\left\{c \mathrm{~F}^{01}, c \mathrm{~F}^{02}, \mathrm{c} \mathrm{~F}^{03}\right\} \\
& \left\{\mathrm{B}_{x^{\prime}} \mathrm{B}_{y^{\prime}} \mathrm{B}_{z}\right\}=\left\{\mathrm{F}^{23}, \mathrm{~F}^{31}, \mathrm{~F}^{12}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\boldsymbol{\mu v}=01} \\
& \mathrm{~F}^{01}=\Lambda_{\rho}^{0} \Lambda_{\sigma}^{1} F^{\prime \rho \sigma}=\Lambda_{0}^{0} \Lambda_{1}^{1} F^{01}+\Lambda_{1}^{0} \Lambda_{0}^{1}{ }_{0} F^{\prime 10} \\
& \mathrm{E}_{\mathrm{x}}=\gamma^{2} \mathrm{E}_{\mathrm{x}}^{\prime}+\gamma^{2}\left(\mathrm{v}^{2} / \mathrm{c}^{2}\right)\left(-\mathrm{E}_{\mathrm{x}}^{\prime}\right) \\
& \mathrm{E}_{\mathrm{x}}=\mathrm{E}_{\mathrm{x}}^{\prime} \\
& \boldsymbol{\mu \mathbf { v }}=\mathbf{0 2} \\
& \mathrm{F}^{02}=\Lambda_{\rho}^{0} \Lambda_{\sigma}^{2} F^{\prime \rho \sigma}=\Lambda_{0}^{0} \Lambda_{2}^{2} F^{\prime 02}+\Lambda_{1}^{0} \Lambda_{2}^{2} F^{\prime 12} \\
& \mathrm{E}_{\mathrm{y}}=\gamma \mathrm{E}_{\mathrm{y}}^{\prime}+\mathrm{c} \gamma(\mathrm{v} / \mathrm{c}) \mathrm{B}_{\mathrm{z}}^{\prime} \\
& \mathrm{E}_{\mathrm{y}}=\gamma\left(\mathrm{E}_{\mathrm{y}}^{\prime}+\mathrm{v} \mathrm{~B}_{\mathrm{z}}^{\prime}\right) \\
& \underline{\boldsymbol{\mu v}=\mathbf{0 3}} \\
& \operatorname{similarly} \\
& \mathrm{E}_{\mathrm{z}}=\gamma\left(\mathrm{E}_{\mathrm{z}}^{\prime}-\mathrm{v} \mathrm{~B}_{\mathrm{y}}^{\prime}\right)
\end{aligned}
$$

$\underline{\mu}=12$

$$
\begin{aligned}
\mathrm{F}^{12}= & \Lambda_{\rho}^{1} \Lambda_{\sigma}^{2} \mathrm{~F}^{\prime \rho \sigma} \\
& =\Lambda_{0}^{1} \Lambda_{2}^{2} \mathrm{~F}^{\prime 02}+\Lambda_{1}^{1} \Lambda_{2}^{2} \mathrm{~F}^{\prime 12} \\
\mathrm{~B}_{\mathrm{z}}= & \gamma(\mathrm{v} / \mathrm{c})\left(\mathrm{E}_{\mathrm{y}} / \mathrm{c}\right)+\gamma \mathrm{B}_{\mathrm{z}}^{\prime} \\
\mathrm{B}_{\mathrm{z}}= & \gamma\left(\mathrm{B}_{\mathrm{z}}^{\prime}+\left(\mathrm{v} / \mathrm{c}^{2}\right) \mathrm{E}_{\mathrm{y}}\right)
\end{aligned}
$$

$\underline{\mu}=31$

similarly

$$
\mathrm{B}_{\mathrm{y}}=\gamma\left(\mathrm{B}_{\mathrm{y}}^{\prime}-\left(\mathrm{v} / \mathrm{c}^{2}\right) \mathrm{E}_{\mathrm{z}}\right)
$$

$\mu \mathrm{v}=23$

$$
\begin{aligned}
\mathrm{F}^{23} & =\Lambda_{\rho}^{2} \Lambda_{\sigma}^{3} \mathrm{~F}^{\prime \rho \sigma} \\
& =\Lambda_{2}^{2} \Lambda_{3}^{3}{ }_{3} \mathrm{~F}^{\prime 23} \\
\mathrm{~B}_{\mathrm{x}} & =\mathrm{B}_{\mathrm{x}}^{\prime}
\end{aligned}
$$

Tables of coordinate transformations

 and field transformationsSuppose reference frame \boldsymbol{F}^{\prime} moves with velocity $\mathbf{v}=\mathrm{v} \mathbf{i}$ with respect to frame \boldsymbol{F}.

Picture:

Coordinate transformations ($\mathrm{x}^{\mu} \leftarrow \mathrm{x}^{\prime \mu}$) $\mathrm{x}^{\mu}=\Lambda^{\mu}{ }_{\mathrm{p}} \mathrm{x}^{\rho}$

$$
\Lambda_{\mathrm{p}}^{\mu}=\begin{array}{llll}
\gamma & \gamma \mathrm{v} / \mathrm{c} & 0 & 0 \\
\gamma \mathrm{v} / \mathrm{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}
$$

$$
\begin{aligned}
& t=\gamma\left(t^{\prime}+\left(v / c^{2}\right) x^{\prime}\right) \\
& x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
& y=y^{\prime} \\
& z=z^{\prime}
\end{aligned}
$$

Field transformations ($\boldsymbol{F}^{\mu v} \leftarrow \boldsymbol{F}^{\mu \nu}$)
$\mathrm{E}_{\mathrm{x}}=\mathrm{E}_{\mathrm{x}}^{\prime}$
$E_{y}=\gamma\left(E_{y}^{\prime}+v B_{z}^{\prime}\right)$
$E_{z}=\gamma\left(E_{z}^{\prime}-v B_{y}^{\prime}\right)$
$\mathrm{B}_{\mathrm{x}}=\mathrm{B}_{\mathrm{x}}^{\prime}$
$\mathrm{B}_{\mathrm{y}}=\gamma\left(\mathrm{B}_{\mathrm{y}}^{\prime}-\left(\mathrm{v} / \mathrm{c}^{2}\right) \mathrm{E}_{\mathrm{z}}\right)$
$\mathrm{B}_{\mathrm{z}}=\gamma\left(\mathrm{B}_{\mathrm{z}}^{\prime}+\left(\mathrm{v} / \mathrm{c}^{2}\right) \mathrm{E}_{\mathrm{y}}\right)$

Example.

Consider a line of charge that is at rest in reference frame F ', lying along the x^{\prime} axis; charge per unit length $=\lambda$.
Use the field transformations to calculate the electric and magnetic fields in the frame F. NOTA BENE: the line of charge moves in the x direction relative to frame F.
Picture:

Solution:

First, what are the fields \mathbf{E}^{\prime} and \mathbf{B}^{\prime} ?
By Gauss's law, the electric field around a charged line points radially away from the line, with magnitude $\lambda /\left(2 \pi \varepsilon_{0} \mathrm{r}^{\prime}\right)$ where r^{\prime} is the perpendicular distance from the line.
$\mathbf{E}^{\prime}=\lambda /\left(2 \pi \varepsilon_{0} r^{\prime}\right)\left\{\left(y^{\prime} / r^{\prime}\right) \mathbf{j}+\left(z^{\prime} / r^{\prime}\right) \mathbf{k}\right\}$
On the other hand $\mathbf{B}^{\prime}=0$ because there is no current.

The transformed fields (relative velocity $=\mathrm{v}$ i):
$\mathrm{E}_{\mathrm{x}}=\mathrm{E}_{\mathrm{x}}^{\prime}=0$
$\mathrm{E}_{\mathrm{y}}=\gamma \mathrm{E}_{\mathrm{y}}^{\prime}$
$\mathrm{E}_{\mathrm{z}}=\gamma \mathrm{E}_{\mathrm{z}}$
$\mathbf{E}=\gamma \lambda /\left(2 \pi \varepsilon_{0} \mathrm{r}^{\prime}\right)\left\{\left(\mathrm{y}^{\prime} / \mathrm{r}^{\prime}\right) \mathbf{j}+\left(\mathrm{z}^{\prime} / \mathrm{r}^{\prime}\right) \mathbf{k}\right\}$

$$
\mathrm{E}=\mathrm{\gamma} \lambda /\left(2 \pi \varepsilon_{0} \mathrm{r}\right)\{(\mathrm{y} / \mathrm{r}) \mathrm{j}+(\mathrm{z} / \mathrm{r}) \mathbf{k}\} ;
$$

this is the same as a line of charge with density $\gamma \lambda$, larger than λ because of Lorentz contraction.
$\mathrm{B}_{\mathrm{x}}=\mathrm{B}_{\mathrm{x}}^{\prime}=0$
$B_{y}=-\gamma\left(v / c^{2}\right) E_{z}$
$\mathrm{B}_{\mathrm{z}}=\gamma\left(\mathrm{v} / \mathrm{c}^{2}\right) \mathrm{E}_{\mathrm{y}}$
$\mathbf{B}=\gamma\left(\mathrm{v} / \mathrm{c}^{2}\right) \lambda /\left(2 \pi \varepsilon_{0} \mathrm{r}^{\prime}\right)\left\{\left(-\mathrm{z}^{\prime} / \mathrm{r}^{\prime}\right) \mathbf{j}+\left(\mathrm{y}^{\prime} / \mathrm{r}^{\prime}\right) \mathbf{k}\right\}$

$$
\mathrm{B}=\mu_{0} I /(2 \pi \mathrm{r})\{(-\mathrm{z} / \mathrm{r}) \mathrm{j}+(\mathrm{y} / \mathrm{r}) \mathbf{k}\} ;
$$

this is the same as a line of current with
$I=\boldsymbol{\gamma} \boldsymbol{\lambda}$, by Ampere's law.

Next lecture --

calculate the electric and magnetic fields of a single charge that moves with constant velocity v .

