What does an electromagnetic wave look like in a moving frame of reference?
I.e., given an electromagnetic wave in one inertial frame F, what does it look like in another inertial frame F^{\prime} ?

Ref. frame F

$E(x, t)=E_{0} \cos [k x-\omega t] e_{z}$
$B(x, t)=\left(E_{0} / c\right) \cos [k x-\omega t]\left(-e_{Y}\right)$

Now suppose F^{\prime} moves with velocity $\mathrm{v} \mathbf{e}_{\mathrm{x}}$ with respect to \boldsymbol{F}. What are the fields as observed in the frame F^{\prime} ?

Example

Example

The red shift in astronomy

Ref. frame \boldsymbol{F}

$E(x, t)=E_{0} \cos [k x-\omega t] e_{z}$
$B(x, t)=\left(E_{0} / c\right) \cos [k x-\omega t]\left(-e_{Y}\right)$

Ref. frame \boldsymbol{F}^{\prime}

F^{\prime} moves with velocity v e_{x} with respect to \boldsymbol{F}.

__coordinates_ _

$$
\begin{array}{ll}
t^{\prime}=y\left(t-v x / c^{2}\right) & t=\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right) \\
x^{\prime}=\gamma(x-v t) & x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime}
\end{array}
$$

fields_ _

$$
\begin{array}{ll}
E_{x}^{\prime}=E_{x} & \Rightarrow E_{x}^{\prime}=0 \\
E_{y}^{\prime}=\gamma\left(E_{y}-v B_{z}\right) & \Rightarrow E_{y}^{\prime}=0 \\
E_{z}^{\prime}=\gamma\left(E_{z}+v B_{y}\right) & \Rightarrow E_{z}^{\prime}=\text { (see below) }
\end{array}
$$

$$
E_{z}^{\prime}=\mathrm{V}\left(\mathrm{E}_{0}-(\mathrm{v} / \mathrm{c}) \mathrm{E}_{0}\right) \cos [\mathrm{kx}-\omega \mathrm{t}]
$$

$$
=\mathrm{Y}(1-\mathrm{v} / \mathrm{c}) \mathrm{E}_{0}
$$

$$
\cdot \cos \left[\mathrm{k} Y\left(\mathrm{x}^{\prime}+\mathrm{vt} \mathrm{t}^{\prime}\right)-\omega \mathrm{Y}\left(\mathrm{t}^{\prime}+\mathrm{vx} \mathrm{x}^{\prime} / \mathrm{c}^{2}\right)\right]
$$

$$
=E_{0}^{\prime} \cos \left[k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}\right]
$$

where
$E_{0}^{\prime}=\gamma(1-v / c) E_{0}$
$k^{\prime}=\gamma\left(k-\omega v / c^{2}\right)=\gamma(1-v / c) k$
$\omega^{\prime}=\gamma(\omega-v k)=\gamma(1-v / c) \omega$

Note:

$$
Y(1-v / c)=\sqrt{\frac{1+v / c}{1-v / x}}
$$

and
$B_{x}^{\prime}=B_{x} \quad \Rightarrow B_{x}^{\prime}=0$
$B_{y}^{\prime}=\gamma\left(B_{y}+v E_{z} / c^{2}\right) \Rightarrow B_{y}^{\prime}=$ (see below)
$B_{z}^{\prime}=\gamma\left(B_{z}-v E_{y} / c^{2}\right) \Rightarrow B_{z}^{\prime}=0$
$B_{y}^{\prime}=\gamma\left(-E_{0} / c+\left(v / c^{2}\right) E_{0}\right) \cos [k x-\omega t]$
$=\mathrm{Y}(1-\mathrm{v} / \mathrm{c})\left(-\mathrm{E}_{0} / \mathrm{c}\right)$
. $\cos \left[k \gamma\left(x^{\prime}+v t^{\prime}\right)-\omega \gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right)\right]$
$=-\left(E^{\prime} / c\right) \cos \left[k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}\right]$
where $E_{0}^{\prime}, k^{\prime}$ and ω^{\prime} were given before.

So here are the results:
$E^{\prime}\left(x^{\prime}, t^{\prime}\right)=E_{0}^{\prime} \cos \left[k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}\right] e_{z}$ $B^{\prime}\left(x^{\prime}, t^{\prime}\right)=\left(E_{0}^{\prime} / c\right) \cos \left[k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}\right]\left(-e_{y}\right)$

What is e.m. field in the frame F^{\prime} ?

/1/ It's an electromagnetic wave polarized in the z direction and traveling in the x direction.

But wave parameters are different from their values in the ref. frame F,

$$
\begin{aligned}
& E_{0}^{\prime}=\gamma(1-v / c) E_{0} \\
& k^{\prime}=\gamma(1-v / c) k \\
& \omega^{\prime}=\gamma(1-v / c) \omega
\end{aligned}
$$

/ii/ The wavelength
$\lambda=2 \mathrm{pi} / \mathrm{k}$

$$
\begin{aligned}
& E_{0}^{\prime}=\gamma(1-v / c) E_{0} \\
& k^{\prime}=\gamma(1-v / c) k \\
& \omega^{\prime}=\gamma(1-v / c) \omega
\end{aligned}
$$

$\lambda^{\prime}=\sqrt{\frac{1+v / c}{1-v / c}} \lambda$
If $v>0$ then $\lambda^{\prime}>\lambda$ (red shift);
if $\mathrm{v}<0$ then $\lambda^{\prime}<\lambda$ (blue shift).

This is similar to the Doppler effect of sound, but also different: look up the formula for the Doppler effect .
/iii/ The frequency
$\omega^{\prime}=\sqrt{\frac{1-v / c}{1+v / c}}$
/iv/ The phase velocity
$\mathrm{v}=\omega / \mathrm{k}$

So, $v=c$ and $v^{\prime}=c$; the speed of light is invariant.
/v/ The intensity
$E_{0}{ }^{\prime} / E_{0}=\sqrt{\frac{1-v / c}{1+v / c}}$
Then intensity $\sim \mathrm{E}_{0}{ }^{2}$;
if $\mathrm{v}>0$ then the intensity is smaller; if $\mathrm{v}<0$ then the intensity is larger.

