What does an electromagnetic wave look like in a moving frame of reference? I.e., given an electromagnetic wave in one inertial frame *F*, what does it look like in another inertial frame *F*'?

<u>Ref. frame F</u>

$$\mathbf{E}(\mathbf{x},t) = \mathbf{E}_0 \cos[\mathbf{kx} - \boldsymbol{\omega}t] \mathbf{e}_z$$
$$\mathbf{B}(\mathbf{x},t) = (\mathbf{E}_0/c) \cos[\mathbf{kx} - \boldsymbol{\omega}t] (-\mathbf{e}_y)$$

Now suppose F' moves with velocity v e_x with respect to F. What are the fields as observed in the frame F?

<u>Ref. frame **F**</u>

$$\mathbf{E}(\mathbf{x},t) = \mathbf{E}_0 \cos[\mathbf{k}\mathbf{x} - \boldsymbol{\omega}t] \mathbf{e}_z$$
$$\mathbf{B}(\mathbf{x},t) = (\mathbf{E}_0/c) \cos[\mathbf{k}\mathbf{x} - \boldsymbol{\omega}t] (-\mathbf{e}_y)$$

Ref. frame **F'**

F' moves with velocity v \mathbf{e}_x with respect to F.

__coordinates_ _

$$\begin{array}{ll} t' = \gamma \left(\, t - v x / c^2 \, \right) & t = \gamma \left(\, t' + v x' / c^2 \, \right) \\ x' = \gamma \left(\, x - v t \, \right) & x = \gamma \left(\, x' + v t' \, \right) \\ y' = y & y = y' \\ z' = z & z = z' \end{array}$$

$$\begin{array}{l} --\operatorname{fields}_{-} \\ E'_{x} = E_{x} \qquad \Rightarrow E'_{x} = 0 \\ E'_{y} = \gamma \left(E_{y} - v B_{z} \right) \qquad \Rightarrow E'_{y} = 0 \\ E'_{z} = \gamma \left(E_{z} + v B_{y} \right) \qquad \Rightarrow E'_{z} = (\text{see below}) \\ \end{array}$$

$$\begin{array}{l} E'_{z} = \gamma \left(E_{0} - (v/c) E_{0} \right) \cos[kx - \omega t] \\ = \gamma \left(1 - v/c \right) E_{0} \\ \ldots \cos[k \gamma \left(x' + vt' \right) - \omega \gamma \left(t' + vx'/c^{2} \right)] \\ = E'_{0} \cos[k'x' - \omega't'] \\ \end{array}$$

$$\begin{array}{l} \text{where} \\ E'_{0} = \gamma \left(1 - v/c \right) E_{0} \\ k' = \gamma \left(k - \omega v/c^{2} \right) = \gamma \left(1 - v/c \right) k \\ \omega' = \gamma \left(\omega - v k \right) = \gamma \left(1 - v/c \right) \omega \\ \end{array}$$

$$\begin{array}{l} \text{Note:} \\ \gamma \left(1 - v/c \right) = \sqrt{\frac{1 + v/c}{1 - v/x}} \end{array}$$

and _ _ _

$$\begin{array}{ll} B'_{x} = B_{x} & \Rightarrow B'_{x} = 0 \\ B'_{y} = \gamma \left(B_{y} + v E_{z} / c^{2} \right) & \Rightarrow B'_{y} = (\text{see below}) \\ B'_{z} = \gamma \left(B_{z} - v E_{y} / c^{2} \right) & \Rightarrow B'_{z} = 0 \end{array}$$

 $B'_{y} = \gamma (-E_{0}/c + (v/c^{2}) E_{0}) \cos[kx - \omega t]$

=
$$\gamma (1 - v/c) (-E_0/c)$$

. cos[k $\gamma (x' + vt') - \omega \gamma (t' + vx'/c^2)$

$$= -(E'_{0}/c) \cos[k'x' - \omega't']$$

where E'_{0} , k' and ω' were given before.

So here are the results:

 $E'(x',t') = E'_{0} \cos [k'x' - \omega't'] e_{z}$ $B'(x',t') = (E'_{0}/c) \cos [k'x' - \omega't'] (-e_{y})$

What is e.m. field in the frame F?

/1/ It's an electromagnetic wave polarized in the z direction and traveling in the x direction.

But wave parameters are different from their values in the ref. frame **F**,

```
E_0' = \gamma (1 - v/c) E_0
k' = γ (1 - v/c) k
ω' = γ (1 - v/c) ω
```

/ii/ The wavelength

 $\lambda = 2 pi/k$

λ' =

 $\frac{1+v/c}{1-v/c}$ λ If v > 0 then $\lambda' > \lambda$ (red shift); if v < 0 then $\lambda' < \lambda$ (blue shift).

This is *similar* to the Doppler effect of sound, but also different: look up the formula for the Doppler effect.

/iii/ The frequency

$$\omega' = \sqrt{\frac{1-v/c}{1+v/c}} \omega$$

/iv/ The phase velocity

 $v = \omega/k$

So, v = c and v' = c; the speed of light is invariant.

/v/ The intensity

$$E_0' / E_0 = \sqrt{\frac{1 - v/c}{1 + v/c}}$$

Then intensity ~ E_0^{2} ; if v > 0 then the intensity is smaller; if v < 0 then the intensity is larger.