
Electromagnetic Waves in a Conductor

e.g., metals, plasma

Recall electrostatics:  the electric field in an 
ideal conductor is 0. But now we deal with 
time-dependent fields.

We’ll consider a simple model:

J(x,t) = σ E(x,t) (Ohm’s law)

i.e., an ideal ohmic conductor

Realistic conductors:

● σ depends on ω

● at high frequencies, electron dynamics 

becomes important

● matter is atomic, not a continuum

But this simple model is a good starting point.

Macroscopic Equations

∇ ∙ E = 0 and ∇ ∙ B = 0

∇ × E = −  ∂B/∂t and ∇ × B =   μσ E + με ∂E/∂t

conduction  current +
displacement  current

We seek a wave-like solution with angular 

frequency ω,

E(x,t) = E0 e i ( k x − ω t )    

i.e., an ideal plane wave propagating in the x 

direction.

The Real Part is implied; but we’ll use complex 
functions to simplify the calculation, and take 
the real part at the end of the calculation!



E(x,t) = E0 e i ( k x − ω t )  

∇ ∙ E = 0 implies ex ∙ E0 = 0 ;

i.e., transverse oscillations of E.

∇ × E = −  ∂B/∂t   implies

ik ex × E0 e i ( kx − ωt )  = −  ∂B/∂t

Thus B(x,t) = (k/ ω) ex × E0 e i ( kx − ωt )

I.e., E0, B0, and k form an orthogonal triad.

 ∇ ∙ B = 0 implies ex ∙ B0 = 0 ;

i.e., transverse oscillations of B.

(already true)

∇ × B =   μσ E + με ∂E/∂t  implies

(k/ ω) (ik ex) × (ex × E0) e i ( kx − ωt )

=  − (ik2/ω) E0 e i ( kx − ωt )

=   {  μσ + με ( −iω) } E0 e i ( kx − ωt )

Thus …   k2 = με ω2 + i μσω

(called: the dispersion relation )

So, k is complex.

Eventually we’ll take the real part of the fields, 

but not yet.



Attenuation of the wave  :   k = κ1 + i κ2

E(x,t) = Re E0 e i ( kx − ωt ) 

= E0 e − κ2 x  cos (κ1 x −ωt )

B(x,t) = Re {  (k/ω) ex × E0 e i ( kx − ωt ) }

= ex × E0 /ω  e− κ2 x

{ κ1 cos (κ1 x − ωt ) − κ2 sin (κ1 x − ωt ) }

= ex × E0   ( |k|/ω )  e − κ2 x

 cos (κ1 x − ωt + φ )
Attenuation factor : e− κ2 x

Phase shift of B :  tan φ = κ2/κ1

k2 = με ω2 + i μσω

Write k = κ1 + i κ2 (κ1 and κ2 are real)

Then κ1
2 - κ2

2 = με ω2      and      2 κ1 κ2 = μσω

Solution is

  κ1,2  = ω √ με/2 [ √ 1 + σ2/(εω)2    ±   1 ]½

Checks

● In a dielectric ( σ = 0 )  

{κ1 ; κ2 } = { ω√με = ω/v   ;   0 } ok

● κ1
2 - κ2

2 =  ω2 (με/2) . 2 =  με ω2 ok

● 2 κ1 κ2 = 2  ω2 (με/2) . σ/(εω) = μσω ok



● Wavelength = 2π / κ1 =
(2π v/ω)  SQRT[  2 ε ω/σ ]

          wavelength without conductivity
x a small factor

● Attenuation length
δ = 1 /κ2  =  SQRT[  2/ (μ σ ω) ]
“skin depth”

★ δ is small for metals;
★ e.g., δ ~ 100 atomic layers would be typical 

for I.R. or visible light.
★ METALS ARE OPAQUE.

● Exercise 

Show :

the phase shift ≈ 45 degrees;

and  v B0 / E0 (which is equal to 1 without 

conductivity) is >> 1 for good conductors.

 

The case of “good conductors” ;
i.e., when σ is “large”

κ1,2  = ω √ με/2 [ √ 1 +σ2/(ε ω)2     ± 1 ]½

The σ dependence only occurs in the form σ/(ε 

ω).

● Therefore, “large σ” means σ >> ε ω.

● In this case,  κ1 = κ2 = SQRT [ μσω /2]



next time:
Reflection of light from a conducting surface.
Why are metals shiny?


