
Radiation of Electromagnetic Waves

Heinrich Hertz - 1888

The English mathematical physicist, Sir Oliver 
Heaviside, said in 1891, "Three years ago, 
electromagnetic waves were nowhere. Shortly 
afterward, they were everywhere."

Electric Dipole Radiation
Given sources ( ρ(x,t) and/or  J(x,t) ) what is the 
radiation?
To make plane waves, we would need infinite 
planar sources. That may be an interesting 
academic exercise, but not realistic. More 
important -- finite sources make spherical 
waves.
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Using the Lorentz gauge,

A(x,t) =   μ0   ∫  J(x’ , t −|x-x’| /c ) d3x’

{ We might also have ρ(x,t) but not necessarily. 
In any case    ∇∙J = - ∂ ρ /∂t}

  4π| x - x’ |



The radiation fields
Calculate the asymptotic fields, i.e., propagating 
away from the sources.
We are interested in the fields as  r → ∞ ; i.e., fields 
far from the sources. There, we have only fields in 
empty space, so these asymptotic fields must 
approach wave solutions of the Maxwell equations 
in empty space.
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The exact equation depends on R = | x - x’ |.
But the lowest order approximation is good 
enough to determine the “radiation fields” ; so we 
have  A(x,t) ~ μ0/(4π r)  ∫ J(x’, t - r/c) d3x’

Theorem.
Let p(t’) be the electric dipole moment of the source 
at the time t’. Then

Proof.
{Temporarily drop the prime ( ’ ) on all the 
coordinates. Put it back at the end.}
Note that 

∫   ∇∙ (xi J) d
3x = 0 ,

by Gauss’s theorem because the function xi J(x,t) is 
0 at infinity. So

0 = ∫   {  Ji + xi ∇∙J ) d3x
0 = ∫  ( Ji d

3x  −   xi  ∂ρ /∂t ) d3x
The definition of the dipole moment of a charge 
distribution is p = ∫ x ρ d3x.      Therefore

∫  Ji d
3x  =  dpi /dt . Q.E.D.



A(x,t) ~                    
evaluated at t’ = t - r/c ;
R = | x - x’ | ;   r = | x |

The asymptotic E(x,t) and B(x,t) 

 μ0        dp
4π r      dt’       






