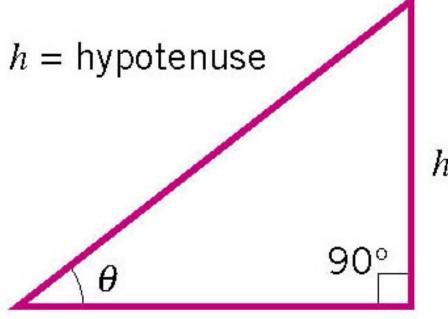
Chapter 3

Kinematics in Two Dimensions



 $h_{\rm o}$ = length of side opposite the angle heta

 $h_{\rm a} = {\rm length~of~side}$ adjacent to the angle heta

$$h = \text{hypotenuse}$$

$$\theta \qquad 90^{\circ}$$

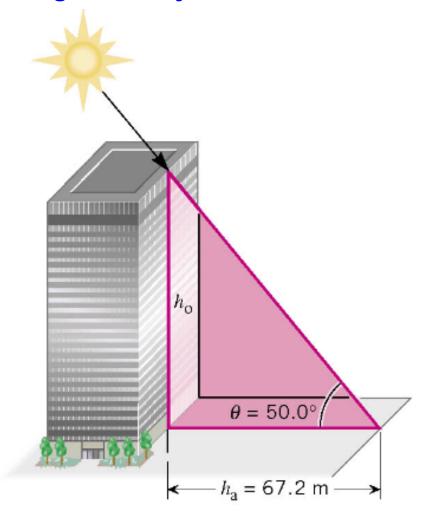
 $h_{\rm O}$ = length of side opposite the angle heta

$$\sin\theta = \frac{h_o}{h}$$

$$\cos\theta = \frac{h_a}{h}$$

$$h_{\rm a}={
m length}$$
 of side adjacent to the angle $heta$

$$\tan \theta = \frac{h_o}{h_a}$$

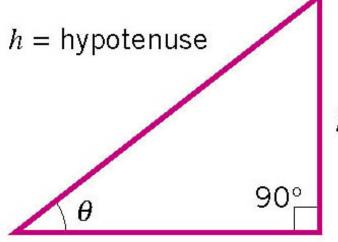


$$\tan \theta = \frac{h_o}{h_a}$$

$$\tan 50^\circ = \frac{h_o}{67.2 \text{m}}$$

$$h_o = \tan 50^\circ (67.2 \,\mathrm{m}) = 80.0 \,\mathrm{m}$$

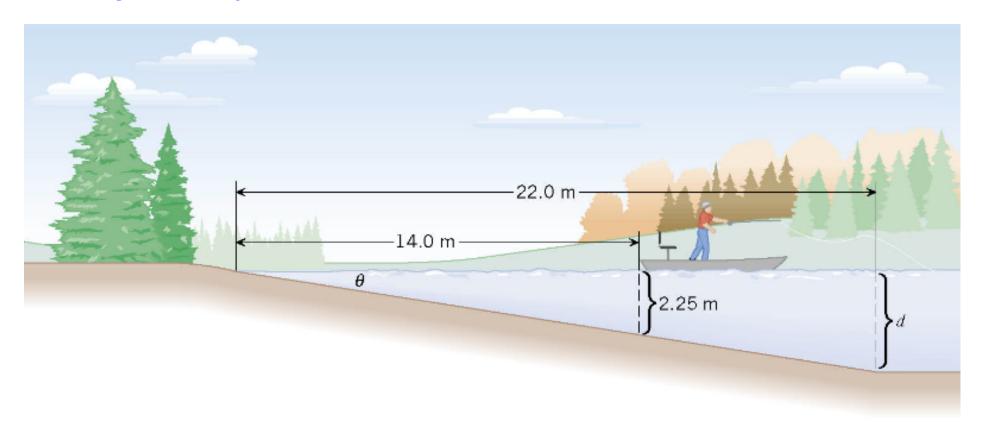
$$\theta = \sin^{-1} \left(\frac{h_o}{h} \right)$$



$$h_{\rm o}$$
 = length of side opposite the angle θ = $\cos^{-1} \left(\frac{h_a}{h} \right)$

 h_a = length of side adjacent to the angle θ

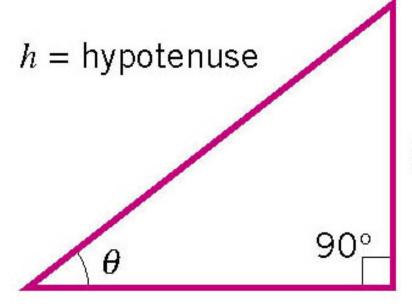
$$\theta = \tan^{-1} \left(\frac{h_o}{h_a} \right)$$



$$\theta = \tan^{-1} \left(\frac{h_o}{h_a} \right) \qquad \theta = \tan^{-1} \left(\frac{2.25 \text{m}}{14.0 \text{m}} \right) = 9.13^\circ$$

Pythagorean theorem:

$$h^2 = h_o^2 + h_a^2$$



 $h_{\rm o} = {
m length} \ {
m of side}$ opposite the angle heta

 $h_{\rm a}=$ length of side adjacent to the angle heta

3.2 Scalars and Vectors

Directions of vectors $\vec{\mathbf{F}}_1$ and $\vec{\mathbf{F}}_2$ appear to be the same.

Vector
$$\vec{\mathbf{F}}_1$$
, (bold + arrow over it)

has 2 parts:

magnitude = F_1 (italics)

direction = up & to the right

Vector
$$\vec{\mathbf{F}}_2$$
, (bold + arrow over it)

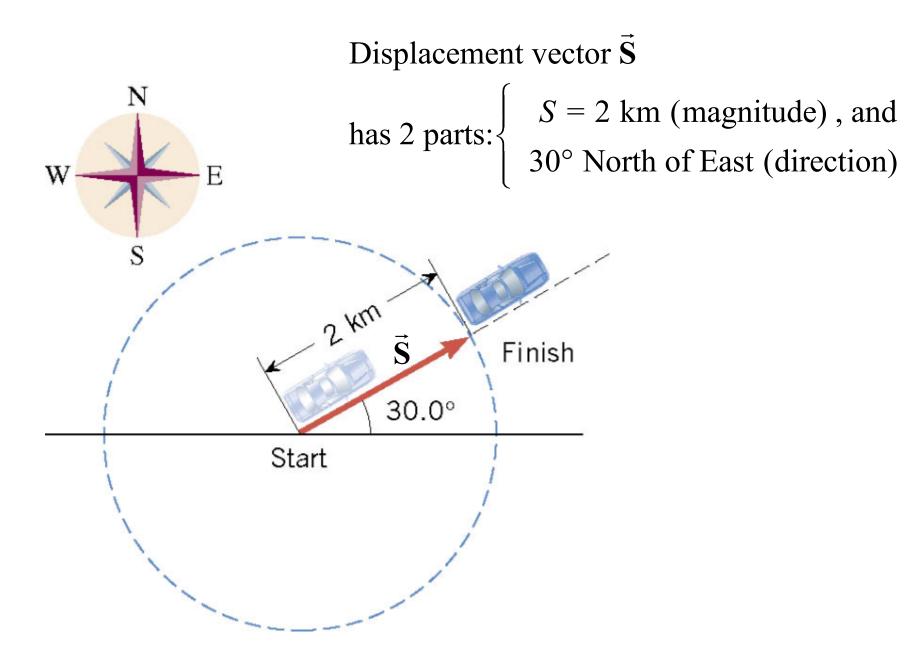
has 2 parts:
$$\begin{cases}
\text{magnitude} = F_2 \text{ (italics)} \\
\text{direction} = \text{up \& to the right}
\end{cases}$$

$$F_2 = 8 \text{ lb}$$

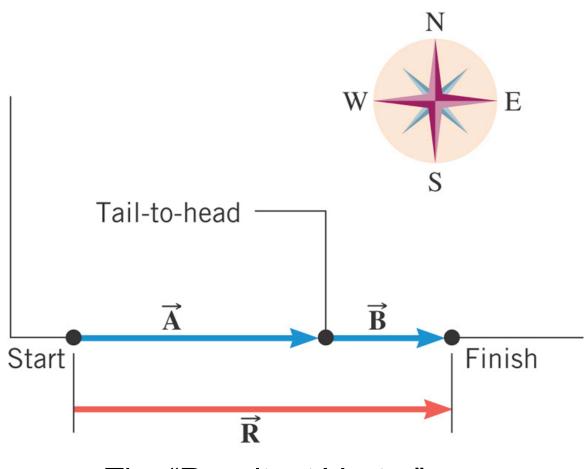
$$\vec{\mathbf{F}}_2$$

Directions of vectors $\vec{\mathbf{F}}_1$ and $\vec{\mathbf{F}}_2$ appear to be the same.

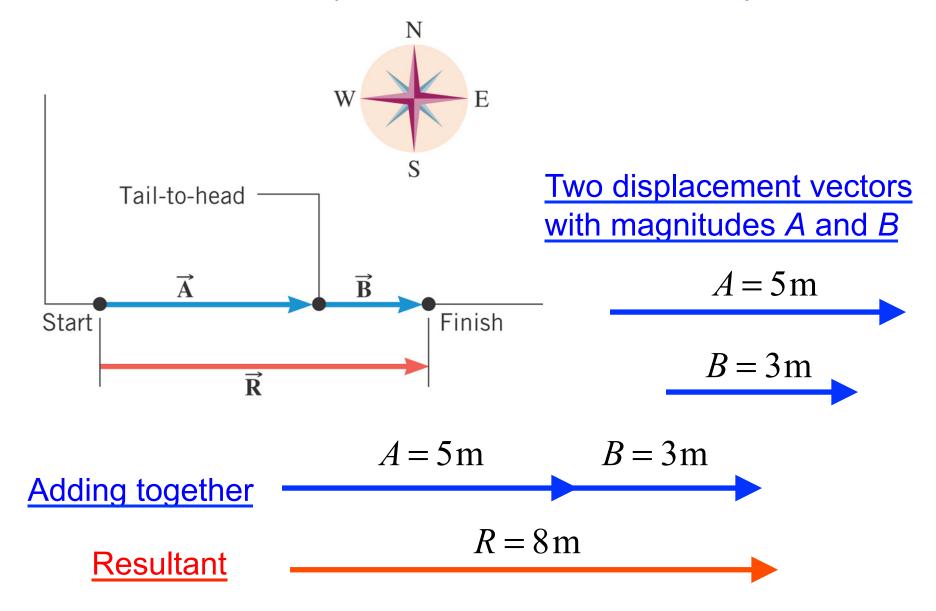
3.2 Scalars and Vectors



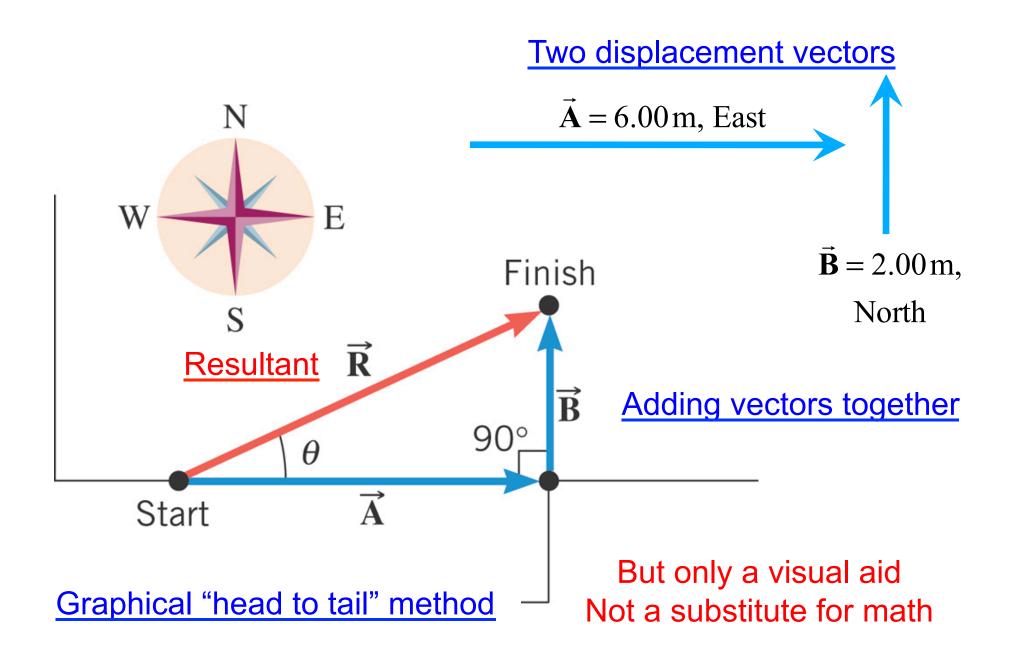
Often it is necessary to add one vector to another.

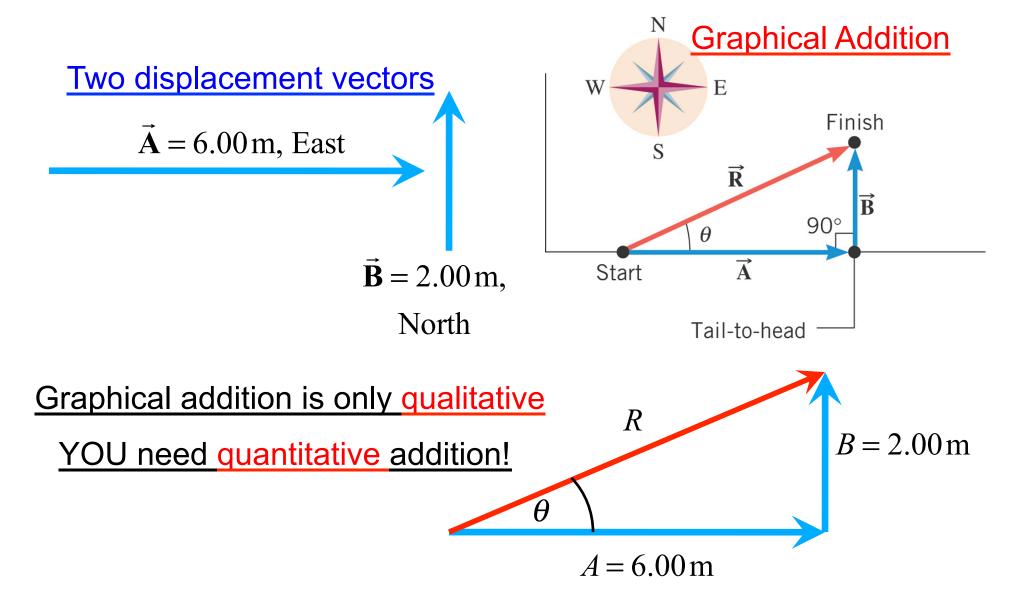


The "Resultant Vector"



Vector addition is "commutative" - order of the addition doesn't matter



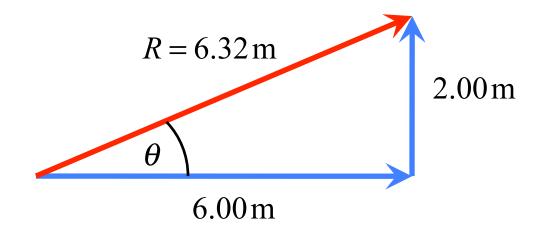


To do this addition of vectors requires trigonometry

Apply Pythagorean Theroem

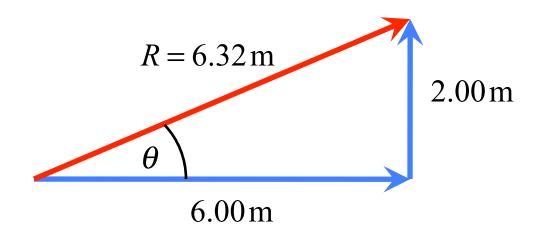
$$R^2 = (2.00 \,\mathrm{m})^2 + (6.00 \,\mathrm{m})^2$$

$$R = \sqrt{(2.00 \,\mathrm{m})^2 + (6.00 \,\mathrm{m})^2} = 6.32 \,\mathrm{m}$$



Use trigonometry to determine the angle

$$\tan \theta = 2.00/6.00$$
 tangent (angle) = $\frac{\text{opposite side}}{\text{adjacent side}}$
 $\theta = \tan^{-1}(2.00/6.00) = 18.4^{\circ}$

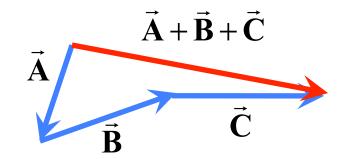


Also

$$\theta = \sin^{-1}(2.00/6.32) = 18.4^{\circ}$$
 $\theta = \cos^{-1}(6.00/6.32) = 18.4^{\circ}$

Clicker Question 3.1

Three vectors are given: \vec{A} , \vec{B} , and \vec{C} .



Which of the choices below is equal to $\vec{A} + \vec{B} + \vec{C}$?

A)
$$\vec{\mathbf{C}} + \vec{\mathbf{B}} + \vec{\mathbf{A}}$$

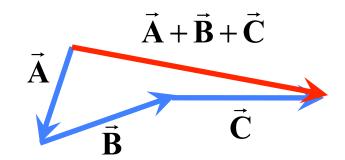
B)
$$\vec{B} + \vec{A} + \vec{C}$$

C)
$$\vec{C} + \vec{A} + \vec{B}$$

- D) None of the above
- E) All of the above

Clicker Question 3.1

Three vectors are given: \vec{A} , \vec{B} , and \vec{C} .



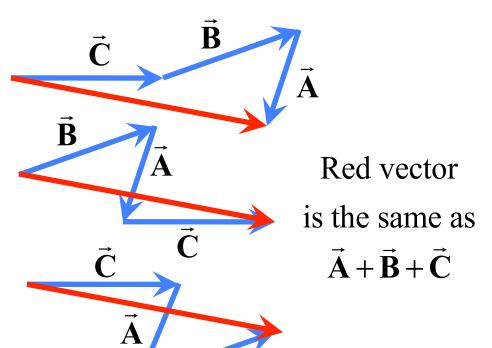
Which of the choices below is equal to $\vec{A} + \vec{B} + \vec{C}$?

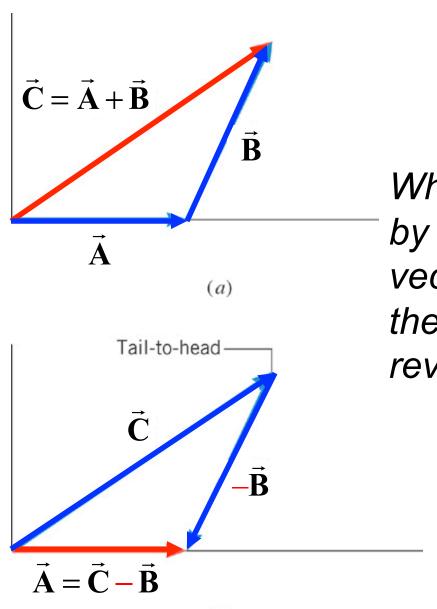
A)
$$\vec{C} + \vec{B} + \vec{A}$$

B)
$$\vec{\mathbf{B}} + \vec{\mathbf{A}} + \vec{\mathbf{C}}$$

C)
$$\vec{C} + \vec{A} + \vec{B}$$

- D) None of the above
- E) All of the above

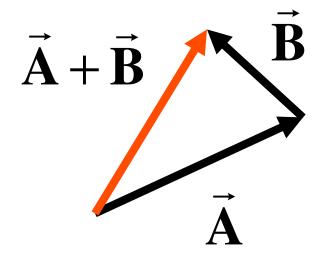




(b)

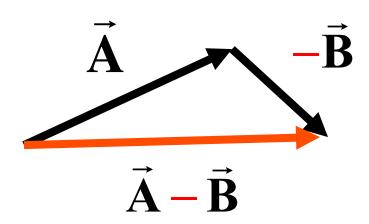
When a vector is multiplied by -1, the magnitude of the vector remains the same, but the direction of the vector is reversed.

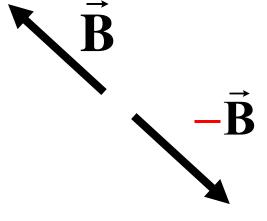
Add vectors $\vec{\mathbf{A}}$ and $\vec{\mathbf{B}}$



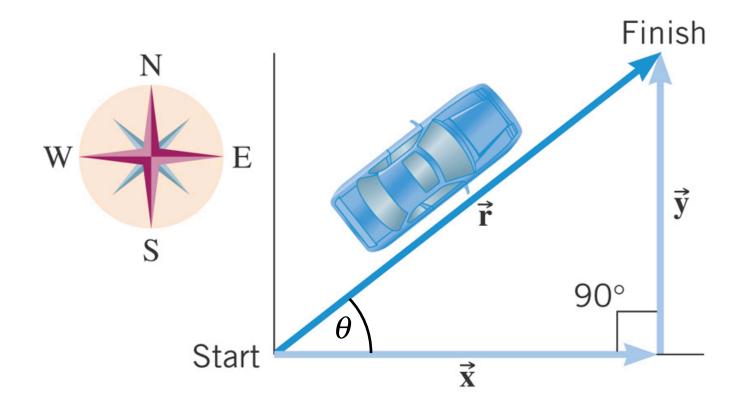
Now you are asked to find $\vec{A} - \vec{B}$

Instead of trying to do Vector Subtraction add to vector \vec{A} the negative of the vector \vec{B}

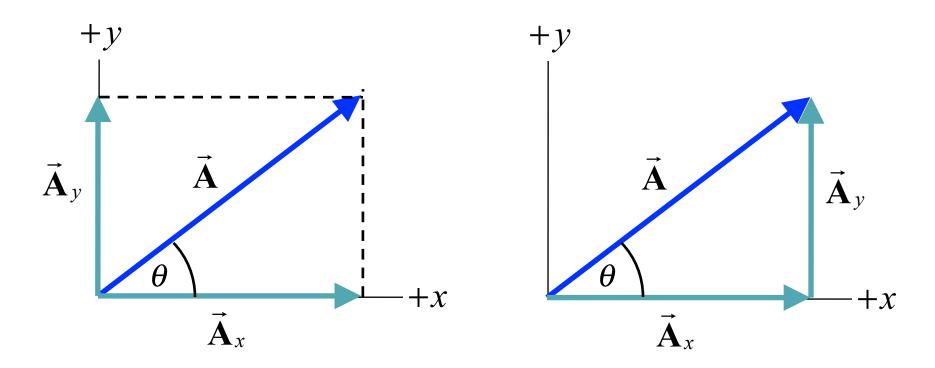




Adding vector $\vec{\mathbf{A}}$ to vector $-\vec{\mathbf{B}}$

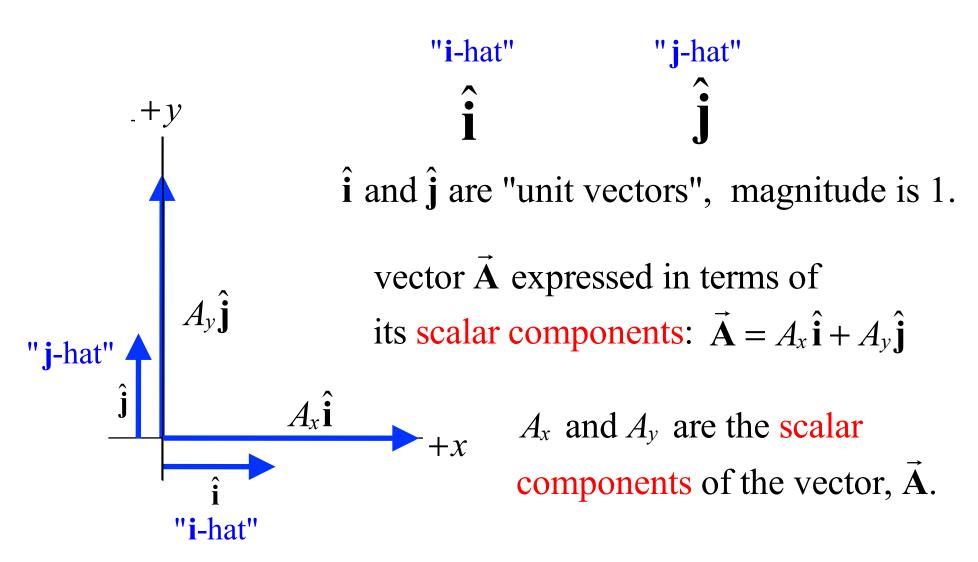


 \vec{x} and \vec{y} are called the x – component vector and the y – component vector of \vec{r} .



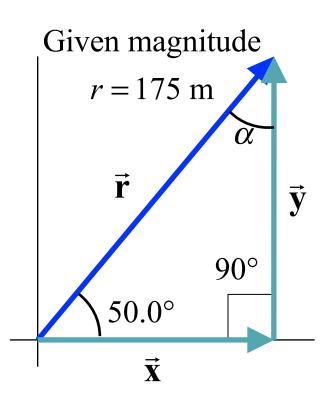
The vector components of \vec{A} are two perpendicular vectors \vec{A}_x and \vec{A}_y that are parallel to the x and y axes, and add together vectorially so that $\vec{A} = \vec{A}_x + \vec{A}_y$.

It is often easier to work with the **scalar components** of the vectors, rather than the component vectors themselves.



Example

A displacement vector has a magnitude of 175 m and points at an angle of 50.0 degrees relative to the *x* axis. Find the *x* and *y* components of this vector.



vector $\vec{\mathbf{x}}$ has magnitude x vector $\vec{\mathbf{y}}$ has magnitude y

$$\sin \theta = y/r$$
 y-component of the vector $\vec{\mathbf{r}}$
 $y = r \sin \theta = (175 \text{ m})(\sin 50.0^{\circ}) = 134 \text{ m}$

$$\cos \theta = x/r$$
 x-component of the vector $\vec{\mathbf{r}}$
 $x = r \cos \theta = (175 \text{ m})(\cos 50.0^{\circ}) = 112 \text{ m}$

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$$
$$= (112 \text{ m})\hat{\mathbf{i}} + (134 \text{ m})\hat{\mathbf{j}}$$

Check:
$$r = \sqrt{(112)^2 + (134)^2} \text{ m} = 175 \text{ m}$$

Clicker Question 3.2

 $\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}$, where $A_x = 3$ m, and $A_y = 4$ m.

What is the magnitude of the vector \vec{A} ?

- A) 7 m
- B) 6m
- c) 5m
- D) $\sqrt{7}$ m
- E) 25m

Clicker Question 3.2

 $\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}$, where $A_x = 3$ m, and $A_y = 4$ m.

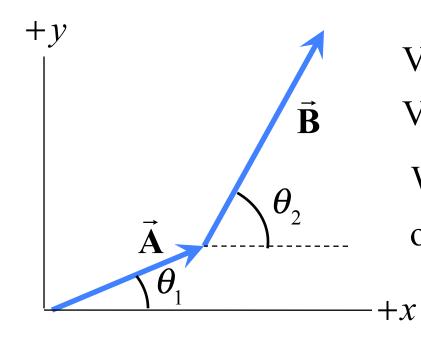
What is the magnitude of the vector \vec{A} ?

D)
$$\sqrt{7}$$
 m

$$\vec{A}$$
 (4m) \hat{j} (3m) \hat{i}

$$\vec{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}$$

magnitude of $\vec{\mathbf{A}}$, $A = \sqrt{A_x^2 + A_y^2} = \sqrt{(3\text{m})^2 + (4\text{m})^2}$
 $= (\sqrt{9 + 16})\text{m} = \sqrt{25}\text{ m} = 5\text{m}$



Vector $\vec{\mathbf{A}}$ has magnitude A and angle θ_1 Vector $\vec{\mathbf{B}}$ has magnitude B and angle θ_2

What is the magnitude and direction of vector $\vec{\mathbf{C}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$?

Graphically no PROBLEM

$\vec{\mathbf{C}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$ $\vec{\mathbf{B}}$ θ_2 θ_1

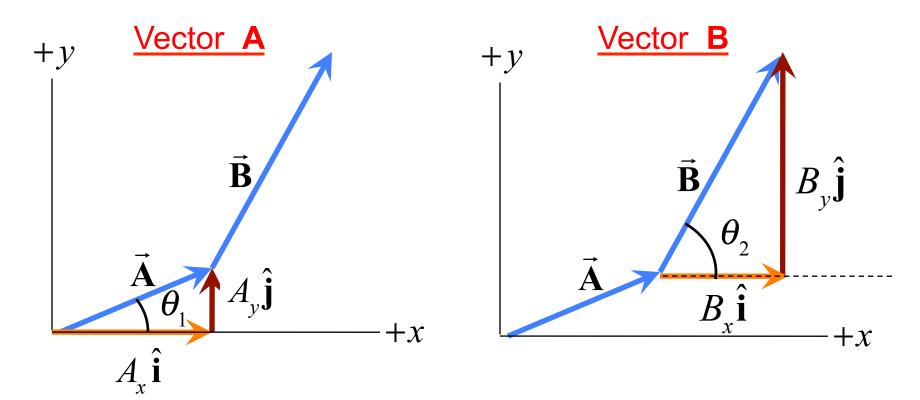
THIS IS A BIG PROBLEM

What is the magnitude of \vec{C} , and what angle θ does it make relative to x-axis?

THIS IS A BIG PROBLEM

What is the magnitude of $\hat{\mathbf{C}}$, and what angle θ does it make relative to x-axis?

The only way to solve this problem is to use vector components!



Get the components of the vectors \vec{A} and \vec{B} .

 $\vec{\mathbf{A}}$: magnitude A and angle θ_1

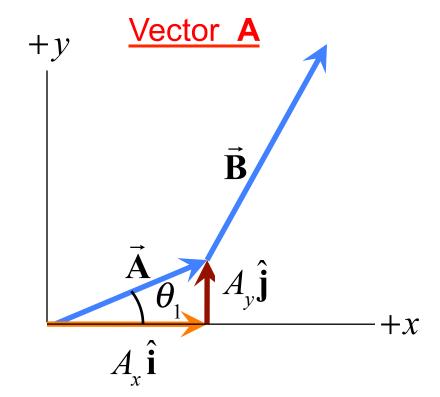
$$\vec{\mathbf{B}}$$
: magnitude B and angle θ_2

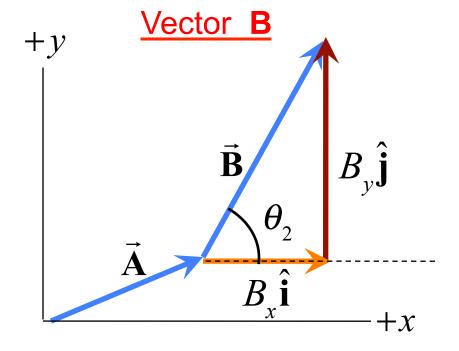
$$A_x = A\cos\theta_1$$

$$A_{v} = A \sin \theta_{1}$$

$$B_x = B\cos\theta_2$$

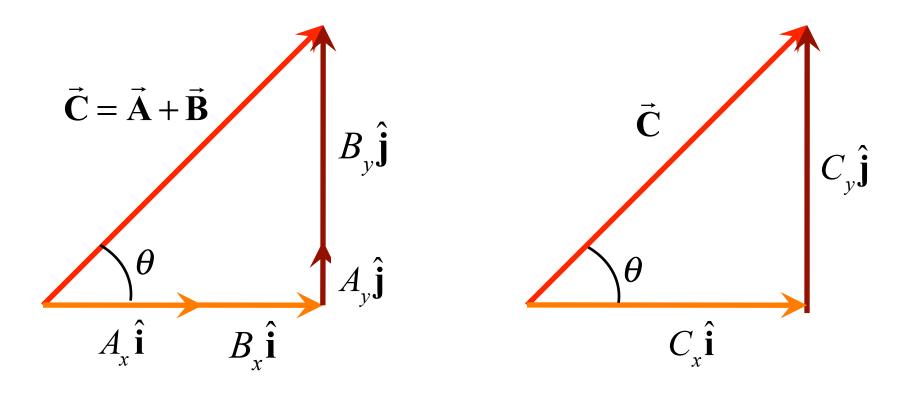
$$B_{v} = B \sin \theta_{2}$$





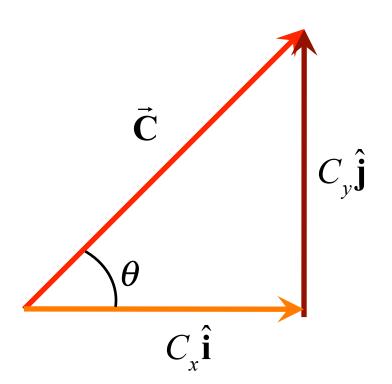
Get components of vector \vec{C} from components of \vec{A} and \vec{B} .

$$A_x = A\cos\theta_1$$
 $B_x = B\cos\theta_2$ $C_x = A_x + B_x$
 $A_y = A\sin\theta_1$ $B_y = B\sin\theta_2$ $C_y = A_y + B_y$



What is the magnitude of \vec{C} , and what angle θ does it make relative to x-axis?

$$C_x = A_x + B_x$$
$$C_y = A_y + B_y$$



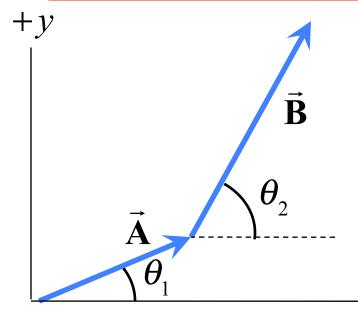
PROBLEM IS SOLVED

magnitude of
$$\vec{\mathbf{C}}$$
: $C = \sqrt{C_x^2 + C_y^2}$

Angle
$$\theta$$
: $\tan \theta = \frac{C_y}{C_x}$;
 $\theta = \tan^{-1}(C_y/C_x)$

3.2 Addition of Vectors by Means of Components

Summary of adding two vectors together



Vector $\vec{\mathbf{A}}$ has magnitude A and angle θ_1 Vector $\vec{\mathbf{B}}$ has magnitude B and angle θ_2 What is the vector $\vec{\mathbf{C}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$?

- 1) Determine components of vectors $\vec{\bf A}$ and $\vec{\bf B}: A_x, A_y$ and B_x, B_y
- 2) Add x-components to find $C_x = A_x + B_x$
- 3) Add y-components to find $C_y = A_y + B_y$
- 4) Determine the magnitude and angle of vector $\vec{\mathbf{C}}$

magnitude
$$C = \sqrt{C_x^2 + C_y^2}$$
; $\theta = \tan^{-1}(C_y/C_x)$