Chapter 10

Fluids conclusion

10.5 Applications of Bernoulli's Equation

Example: Efflux Speed

The tank is open to the atmosphere at the top. Find and expression for the speed of the liquid leaving the pipe at the bottom.

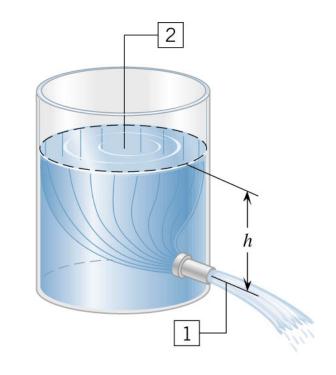
$$P_1 = P_2 = P_{atmosphere} (1 \times 10^5 \text{ N/m}^2)$$

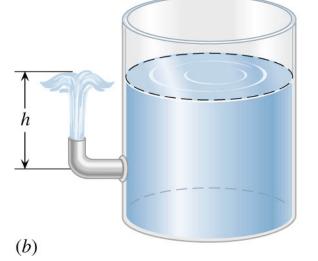
 $v_2 = 0, \quad y_2 = h, \quad y_1 = 0$

$$P_{1} + \frac{1}{2}\rho v_{1}^{2} + \rho g y_{1} = P_{2} + \frac{1}{2}\rho v_{2}^{2} + \rho g y_{2}$$

$$\frac{1}{2}\rho v_{1}^{2} = \rho g h$$

$$v_1 = \sqrt{2gh}$$





(a)

Clicker Question 10.6

Fluid flows from left to right through the pipe shown. Points A and B are at the same height, but the cross-sectional area is bigger at point B than at A. The points B and C are at two different heights, but the cross-sectional area of the pipe is the same. Rank the pressure at the three locations in order from lowest to highest.

Bernoulli's equation: $P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$

Αo

a)
$$P_{\rm A} > P_{\rm B} > P_{\rm C}$$

b)
$$P_{\rm B} > P_{\rm A} = P_{\rm C}$$

c)
$$P_{\rm C} > P_{\rm B} > P_{\rm A}$$

d)
$$P_{\rm B} > P_{\rm A}$$
 & $P_{\rm B} > P_{\rm C}$

e)
$$P_{\rm C} > P_{\rm A}$$
 & $P_{\rm C} > P_{\rm B}$

C •

Bo

Clicker Question 10.6

Fluid flows from left to right through the pipe shown. Points A and B are at the same height, but the cross-sectional area is bigger at point B than at A. The points B and C are at two different heights, but the cross-sectional area of the pipe is the same. Rank the pressure at the three locations in order from lowest to highest.

Bernoulli's equation:
$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$$

a)
$$P_{\rm A} > P_{\rm B} > P_{\rm C}$$

b)
$$P_{\rm B} > P_{\rm A} = P_{\rm C}$$

c)
$$P_{\rm C} > P_{\rm B} > P_{\rm A}$$

d)
$$P_{\rm B} > P_{\rm A}$$
 & $P_{\rm B} > P_{\rm C}$

e)
$$P_{\rm C} > P_{\rm A}$$
 & $P_{\rm C} > P_{\rm B}$

$$P_{\rm B} + \rho g y_{\rm B} = P_{\rm C} + \rho g y_{\rm C}$$

Since $y_{\rm C} > y_{\rm B}$: $P_{\rm B} > P_{\rm C}$

 \mathbf{C} \bullet

$$P_{A} + \frac{1}{2}\rho v_{A}^{2} = P_{B} + \frac{1}{2}\rho v_{B}^{2}$$

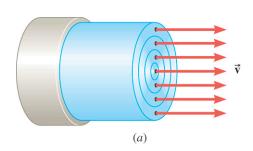
Since $v_{A} > v_{B}$: $P_{B} > P_{A}$

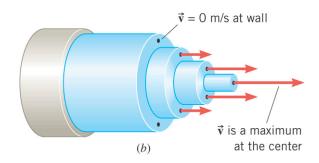
Ao Bo

Pipe area grows: $v_A > v_B$

10.6 Viscous Flow

Flow of an ideal fluid.





FORCE NEEDED TO MOVE A LAYER OF VISCOUS FLUID WITH CONSTANT VELOCITY

The magnitude of the tangential force required to move a fluid layer at a constant speed is given by:

$$F = \frac{\eta A v}{y}$$

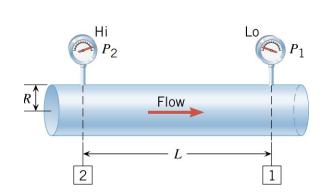
 η , is the coefficient of viscosity SI Unit: Pa·s; 1 poise (P) = 0.1 Pa·s

POISEUILLE'S LAW (flow of viscous fluid)

The volume flow rate is given by:

$$Q = \frac{\pi R^4 \left(P_2 - P_1 \right)}{8\eta L}$$

Pressure drop in a straight uniform diamater pipe.



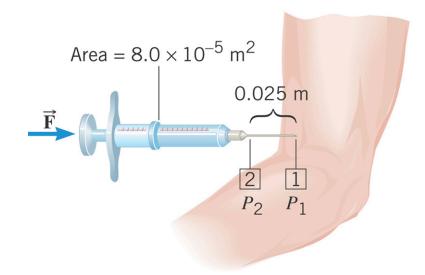
10.6 Viscous Flow

Example: Giving and Injection

A syringe is filled with a solution whose viscosity is 1.5x10⁻³ Pa·s. The internal radius of the needle is 4.0x10⁻⁴m.

The gauge pressure in the vein is 1900 Pa. What force must be applied to the plunger, so that 1.0x10⁻⁶m³ of fluid can be injected in 3.0 s?

 $F = P_2 A = (3100 \text{ Pa})(8.0 \times 10^{-5} \text{ m}^2) = 0.25 \text{ N}$



$$P_{2} - P_{1} = \frac{8\eta LQ}{\pi R^{4}}$$

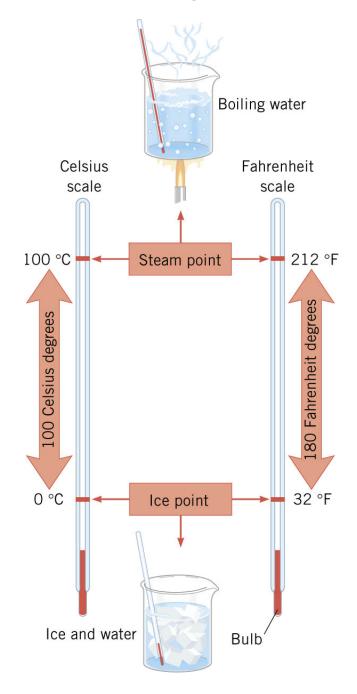
$$= \frac{8(1.5 \times 10^{-3} \,\mathrm{Pa} \cdot \mathrm{s})(0.025 \,\mathrm{m})(1.0 \times 10^{-6} \,\mathrm{m}^{3}/3.0 \,\mathrm{s})}{\pi (4.0 \times 10^{-4} \mathrm{m})^{4}} = 1200 \,\mathrm{Pa}$$

$$P_{2} = (1200 + P_{1}) \,\mathrm{Pa} = (1200 + 1900) \,\mathrm{Pa} = 3100 \,\mathrm{Pa}$$

Chapter 12

Temperature and Heat

12.1 Common Temperature Scales



Temperatures are reported in degrees-Celsius or degrees-Fahrenheit.

Temperature changes, on the other hand, are reported in **Celsius**-*degrees* or **Fahrenheit**-*degrees*:

$$1 \text{ C}^{\circ} = \frac{5}{9} \text{ F}^{\circ} \qquad \left(\frac{100}{180} = \frac{5}{9}\right)$$

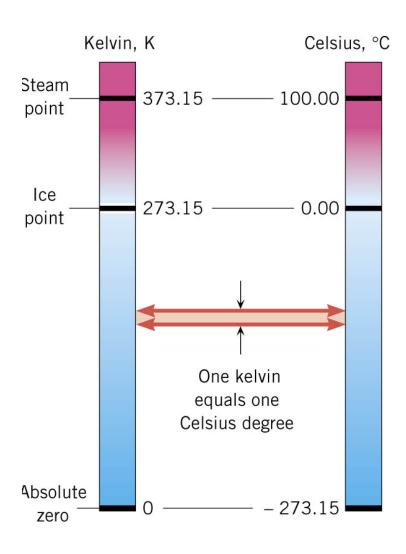
Convert F° to C°:

$$C^{\circ} = \frac{5}{9} (F^{\circ} - 32)$$

Convert C° to F°:

$$F^{\circ} = \frac{9}{5}C^{\circ} + 32$$

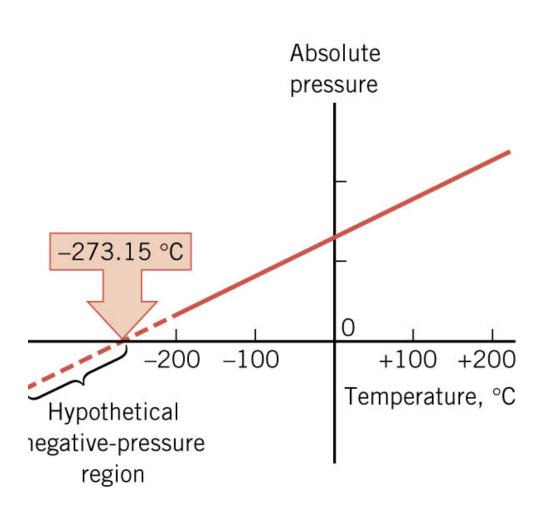
12.1 The Kelvin Temperature Scale



Kelvin temperature

$$T = T_c + 273.15$$

12.1 The Kelvin Temperature Scale



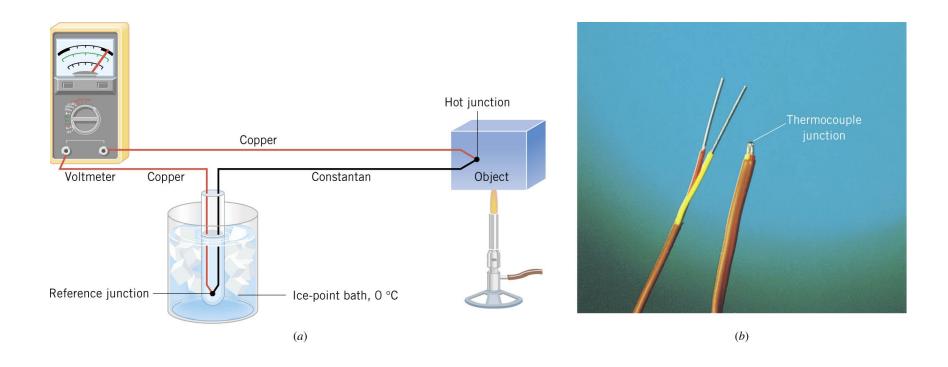
absolute zero point = -273.15°C

Pressure gauge

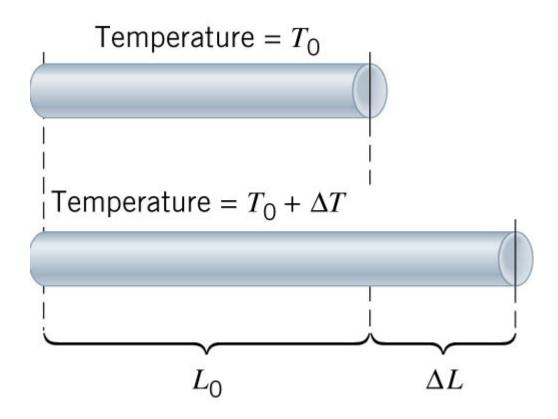
Helium gas (stays a gas)

12.1 Thermometers

Thermometers make use of the change in some physical property with temperature. A property that changes with temperature is called a *thermometric property*.

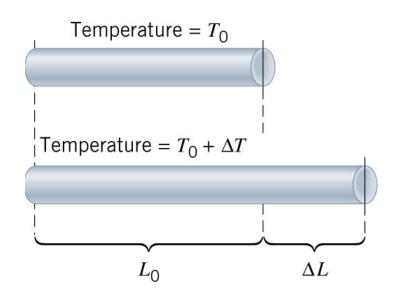


NORMAL SOLIDS

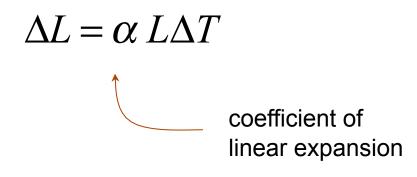


LINEAR THERMAL EXPANSION OF A SOLID

The length of an object changes when its temperature changes:



Change in length proportional to original length and temperature change.



Common Unit for the Coefficient of Linear Expansion: $\frac{1}{C^{\circ}} = (C^{\circ})^{-1}$

Table 12.1 Coefficients of Thermal Expansion for Solids and Liquids^a

Substance	Coefficient of Thermal Expansion (C°) ⁻¹	
	Linear (α)	Volume (β)
Solids		
Aluminum	23×10^{-6}	69×10^{-6}
Brass	19×10^{-6}	57×10^{-6}
Concrete	12×10^{-6}	36×10^{-6}
Copper	17×10^{-6}	51×10^{-6}
Glass (common)	8.5×10^{-6}	26×10^{-6}
Glass (Pyrex)	3.3×10^{-6}	9.9×10^{-6}
Gold	14×10^{-6}	42×10^{-6}
Iron or steel	12×10^{-6}	36×10^{-6}
Lead	29×10^{-6}	87×10^{-6}
Nickel	13×10^{-6}	39×10^{-6}
Quartz (fused)	0.50×10^{-6}	1.5×10^{-6}
Silver	19×10^{-6}	57×10^{-6}
Liquids ^b		
Benzene	_	1240×10^{-6}
Carbon tetrachloride	_	1240×10^{-6}
Ethyl alcohol	_	1120×10^{-6}
Gasoline	_	950×10^{-6}
Mercury	_	182×10^{-6}
Methyl alcohol	_	1200×10^{-6}
Water	_	207×10^{-6}

^aThe values for α and β pertain to a temperature near 20 °C.

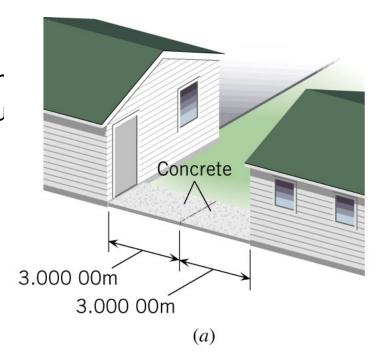
^bSince liquids do not have fixed shapes, the coefficient of linear expansion is not defined for them.

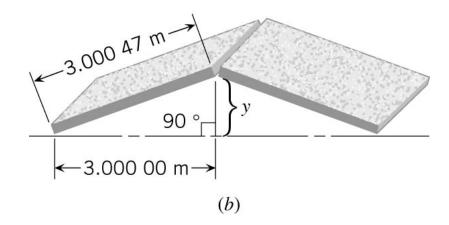
Example: The Buckling of a Sidewalk

A concrete sidewalk is constructed betweer two buildings on a day when the temperatu is 25°C. As the temperature rises to 38°C, the slabs expand, but no space is provided for thermal expansion. Determine the distance *y* in part (b) of the drawing.

$$\Delta L = \alpha L_o \Delta T$$
=\[\begin{aligned} 12 \times 10^{-6} \left(\text{C}^\circ \right)^{-1} \end{aligned} \left(3.0 m \right) \left(13 \text{C}^\circ \right) \]
= 0.00047 m

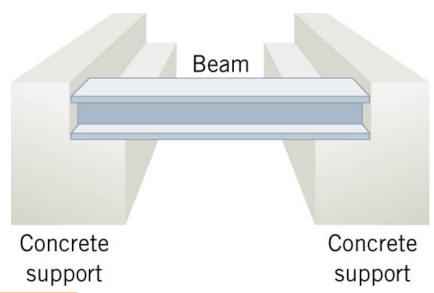
$$y = \sqrt{(3.00047 \text{ m})^2 - (3.00000 \text{ m})^2}$$
$$= 0.053 \text{ m}$$





Example: The Stress on a Steel Beam

The beam is mounted between two concrete supports when the temperature is 23°C. What compressional stress must the concrete supports apply to each end of the beam, if they are to keep the beam from expanding when the temperature rises to 42°C?



Stress =
$$\frac{F}{A} = Y \frac{\Delta L}{L_0}$$
 with $\Delta L = \alpha L_0 \Delta T$
= $Y \alpha \Delta T$
= $\left(2.0 \times 10^{11} \,\text{N/m}^2\right) \left[12 \times 10^{-6} \left(\text{C}^{\circ}\right)^{-1}\right] \left(19 \,\text{C}^{\circ}\right)$
= $4.7 \times 10^7 \,\text{N/m}^2$

Pressure at ends of the beam, $4.7 \times 10^7 \text{ N/m}^2 \approx 170 \text{ atmospheres } (1 \times 10^5 \text{ N/m})$

Conceptual Example: Expanding Cylinders

As the cylinders are heated to the same, but higher, temperature, cylinder C falls off, while cylinder A becomes tightly wedged to cylinder B.

Diameter change proportional to α .

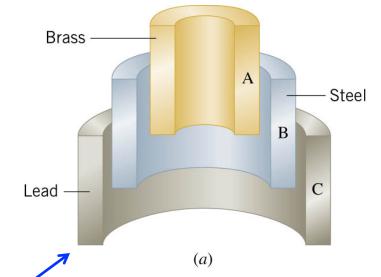
$$\alpha_{\rm Pb} > \alpha_{\rm Brass} > \alpha_{\rm Fe}$$

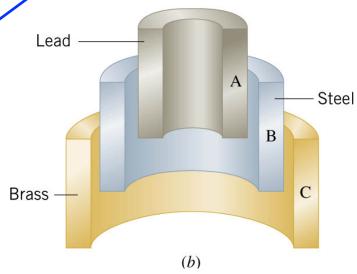
Lead ring falls off steel, brass ring sticks inside.

Table 12.1 Coefficients of Thermal Expansion for Solids and Liquids^a

		1		
Substance		Linear (α)	Volume (β)	
Solids	Linear themal	$\Delta L = \alpha L_0 \Delta T$	$\Delta V = \beta V_o \Delta T$	
Aluminum	expansion	23×10^{-6}	69×10^{-6}	
Brass		19×10^{-6}	57×10^{-6}	
Iron or steel		12×10^{-6}	36×10^{-6}	
Lead		29×10^{-6}	87×10^{-6}	

Coefficient of Thermal Expansion $(C^{\circ})^{-1}$





expansion

12.2 Volume Thermal Expansion

Example: An Automobile Radiator

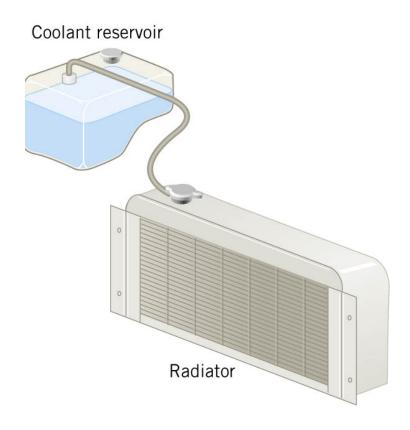
The radiator is made of copper and the coolant has an expansion coefficient of $4.0 \times 10^{-4} \, (\text{C}^{\circ})^{-1}$. If the radiator is filled to its 15-quart capacity when the engine is cold (6°C), how much overflow will spill into the reservoir when the coolant reaches its operating temperature (92°C)?

$$\Delta V_{\text{coolant}} = \left[4.10 \times 10^{-4} \left(\text{C}^{\circ} \right)^{-1} \right] (15 \text{ liters}) (86 \text{ C}^{\circ})$$

$$= 0.53 \text{ liters}$$

$$\Delta V_{\text{radiator}} = \left[51 \times 10^{-6} \left(\text{C}^{\circ} \right)^{-1} \right] (15 \text{ liters}) (86 \text{ C}^{\circ})$$

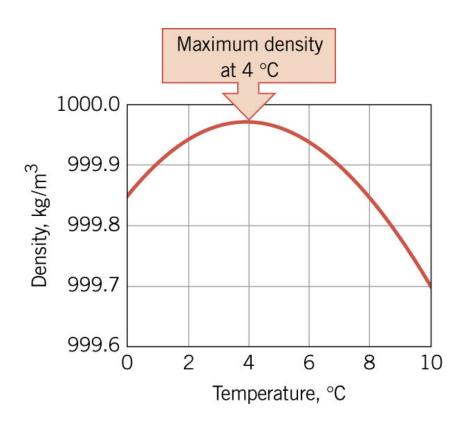
$$= 0.066 \text{ liters}$$

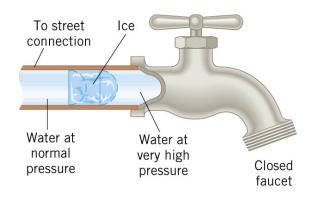


$$\Delta V_{\text{expansion}} = (0.53 - 0.066) \text{ liters}$$
$$= 0.46 \text{ liters}$$

12.2 Volume Thermal Expansion

Expansion of water.

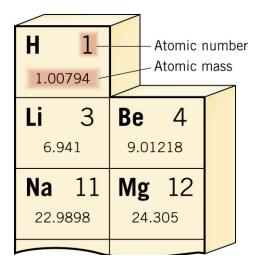




12.3 Molecular Mass, the Mole, and Avogadro's Number

The **atomic number** of an element is the # of protons in its nucleus. **Isotopes** of an element have different # of neutrons in its nucleus.

The *atomic mass unit* (symbol u) is used to compare the mass of elements. The reference is the most abundant isotope of carbon, which is called carbon-12.



$$1 \text{ u} = 1.6605 \times 10^{-24} \text{ g} = 1.6605 \times 10^{-27} \text{ kg}$$

The atomic mass is given in atomic mass units. For example, a Li atom has a mass of 6.941u.

One **mole** (mol) of a substance (element or molecule) contains as many particles as there are atoms in 12 grams of the isotope carbon-12. The number of atoms in 12 grams of carbon-12 is known as Avogadro's number, N_A .

Avogadro's number

$$N_A = 6.022 \times 10^{23} \,\mathrm{mol}^{-1}$$

12.3 Molecular Mass, the Mole, and Avogadro's Number

The mass per mole (in g/mol) of a substance has the same numerical value as the atomic or molecular mass of the substance (in atomic mass units).

For example Hydrogen has an atomic mass of 1.00794 g/mol, while the mass of a single hydrogen atom is 1.00794 u.

N: # of atoms or molecules,

n: # of moles of element or molecule

 m_n : atomic mass (amu) \Rightarrow also grams/mole

$$N = nN_{A}$$
$$m = nm_{p}$$

Example: Hope Diamond & Rosser Reeves Ruby

(a)
$$n = \frac{m}{\text{Mass per mole}} = \frac{(44.5 \text{ carats})[(0.200 \text{ g})/(1 \text{ carat})]}{12.011 \text{g/mol}} = 0.741 \text{ mol}$$

$$N = nN_A = (0.741 \text{ mol})(6.022 \times 10^{23} \text{ mol}^{-1}) = 4.46 \times 10^{23} \text{ atoms}$$

(b)
$$n = \frac{m}{\text{Mass per mole}} = \frac{(138 \text{ carats})[(0.200 \text{ g})/(1 \text{ carat})]}{101.96 \text{g/mol}} = 0.271 \text{ mol}$$

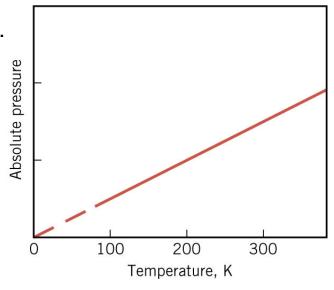
$$N = nN_A = (0.271 \text{ mol})(6.022 \times 10^{23} \text{ mol}^{-1}) = 1.63 \times 10^{23} \text{ atoms}$$

12.3 The Ideal Gas Law

An *ideal gas* is an idealized model for real gases that have sufficiently low densities, and molecules interact only by elastic collisions with others or the walls. (Note – typical molecular speed is ~400 m/s, at 300 K)

At constant volume the pressure is proportional to the temperature.

$$P \propto T$$

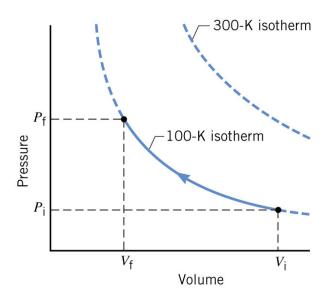


At constant temperature, the pressure is inversely proportional to the volume.

$$P \propto 1/V$$

The pressure is also proportional to the amount of gas.

$$P \propto n$$



Clicker Question 12.1

Under which of the following circumstances does a real gas behave like an ideal gas?

When

- a) the gas particles move very slowly.
- b) the gas particles do not collide with each other very often.
- c) the gas particles bounce off each other without energy loss.
- d) the gas particles don't hit the walls of the container.
- e) there are only one kind of particles in the container.

Clicker Question 12.1

Under which of the following circumstances does a real gas behave like an ideal gas?

When

Molecules interact only by elastic collisions with others or the walls.

- a) the gas particles move very slowly.
- **b)** the gas particles do not collide with each other very often.
- c) the gas particles bounce off each other without energy loss.
- d) the gas particles don't hit the walls of the container.
- e) there are only one kind of particles in the container.

THE IDEAL GAS LAW

The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the <u>number of moles</u> (n) of the gas and is inversely proportional to the volume of the gas.

$$P = \frac{nRT}{V} \qquad PV = nRT \qquad R = 8.31 \,\text{J/(mol · K)}$$

Another form for the Ideal Gas Law using the <u>number of atoms</u> (N)

$$PV = nRT$$

$$= N \left(\frac{R}{N_A}\right)T$$

$$= N \left(\frac{R}{N_A}\right)T$$

$$= N \left(\frac{R}{N_A}\right)T$$

$$= \frac{R}{N_A} = \frac{8.31 \text{J}/(\text{mol} \cdot \text{K})}{6.022 \times 10^{23} \text{mol}^{-1}} = 1.38 \times 10^{-23} \text{J/K}$$

When temperature is involved, a letter $k = k_B$, Boltzmann's constant

Example: Oxygen in the Lungs

In the lungs, the respiratory membrane separates tiny sacs of air (pressure 1.00x10⁵ Pa) from the blood in the capillaries. These sacs are called alveoli. The average radius of the alveoli is 0.125 mm, and the air inside contains 14% oxygen. Assuming that the air behaves as an ideal gas at 310K, find the number of oxygen molecules in one of these sacs.

$$PV = NkT$$

$$N_{tot} = \frac{PV}{k_B T} = \frac{\left(1.00 \times 10^5 \,\text{Pa}\right) \left[\frac{4}{3}\pi \left(0.125 \times 10^{-3} \,\text{m}\right)^3\right]}{\left(1.38 \times 10^{-23} \,\text{J/K}\right) \left(310 \,\text{K}\right)}$$

$$= 1.9 \times 10^{14}$$

$$N_{\text{Oxy}} = (1.9 \times 10^{14}) \times (0.14) = 2.7 \times 10^{13}$$

Clicker Question 12.2

An ideal gas is enclosed within a container by a moveable piston. If the <u>final temperature is two times the initial</u> temperature and the <u>volume is reduced to one-fourth of its</u> initial value, what will the final pressure of the gas be relative to its initial pressure, P_1 ?

- **a)** $8P_1$
- **b)** $4P_1$
- **c)** $2P_1$
- **d)** $P_1/2$
- **e)** $P_1/4$

Clicker Question 12.2

An ideal gas is enclosed within a container by a moveable piston. If the <u>final temperature is two times the initial</u> temperature and the <u>volume is reduced to one-fourth of its</u> initial value, what will the final pressure of the gas be relative to its initial pressure, P_1 ?

- **a)** $8P_1$
- **b)** $4P_1$
- **c)** $2P_1$
- **d)** $P_1/2$
- **e)** $P_1/4$

$$P_{1}V_{1} = nRT_{1}; \quad V_{2} = V_{1}/4; \quad T_{2} = 2T_{1}$$

$$P_{2} = \frac{nRT_{2}}{V_{2}} = \frac{nR(2T_{1})}{V_{1}/4} = 8\frac{nRT_{1}}{V_{1}} = 8P_{1}$$