Classical Dynamics for a System of Particles
(Chapter 9)
Momentum and the Center of Mass

Y
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e Toss a small pebble.
It will follow a parabolic /
trajectory, as shown.

The momentum is, by definition, p=m v .
The x component is constant,
py=m v, Cos 0,
the y component decreases at the rate — mg,
py=myv,;sin - mgt.
The momentum vector is
P(t) =poyi+(pPgy —mMgt)j; (1)
it is consistent with Newton’s second law,
dp/dt=-mgj (the weighy ()

All this is a familiar example of single-particle

dynamics.
Lecture 3a




e Now toss a handful
of small pebbles.

Each pebble will probably move independently. (Two
pebbles could hit each other as they move, but that
would be unlikely; we’ll ignore that possibility.) Then
we can write the momentum of the i-th pebble as

pi(t):pOiXi+(pOiy _migt)j!
consistent with Newton’s second law,
dp; /dt=-m;g]J (the weight of pebble #i)

We know the complete dynamics of the system
because the motions of the pebbles are independent
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The total momentum is defined by

N
P(0) = 2. D) :
by the complete dynamics,

where P, is the initial momentum and M is the total
mass, M = ¥ m,. Compare equations (3) and (1). You
should see that the total momentum of the N
pebbles is mathematically the same as if there were
only one large pebble with mass M.

The center of mass is the “average position of the
system of particles, weighted by their masses.”
That is, N

2. M;X; (t)
X(t) _i=l ¥

=1

1
or, X()= M[mlx1 +MyXy + MgXg + - My Xy ]

Lecture 3a




An important theorem relates the total momentum
and center of mass:

P=MYV where =d—X

dt *)

Here’s the proof ...
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e Now toss a handful of
strongly-interacting pebbles. Y

Suppose that some pebbles
are tied together by strings.
Suppose that some pebbles
are connected by springs,
initially stretched or
compressed. You are not now
tossing a set of N independent

particles, but a big blob of
pebbles that are exerting
forces on each other.

But we can determine the total momentum P(t) and the
center of mass trajectory X(t). The remarkable result is
that the total momentum and the center of mass
trajectory are exactly the same as if the pebbles were
not exerting forces on each other:

P(t) =Poyl + (P, —Mgt)]  (5)

dX P(t)
dt M ()

Note that equations (5) and (6) (for strongly interacting
particles) are the same as equations (3) and (4) (for non-
interacting particles). Why are the total momentum and
center of mass independent of the internal forces in

the system of particles?
Lecture 3a




Proof of equation (5)
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Proof of equation (6)
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These examples — the non-interacting pebbles and the blob
of strongly interacting pebbles — illustrate something
important about the dynamics of a system of particles.
Questions about the total momentum and center of mass
may have simple answers, independent of complicated
internal dynamics.

Exercise: Prove generally, i.e., for P—-MV
any system of particles ... — CM

... where M = the total mass, P = the

total momentum, V = dX/dt =

velocity of the center of mass point, dP
and Fext = the sum of all external dt
forces.

Reading and problem assignments:

*
%* Read Chapter 9 from the
textbook, Thornton and Marion,
Classical Dynamics.

*
*%* Do the LON-CAPA problems
entitled “Homework Set 3a’.
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Classical Dynamics for a System of Particles (Chapter 9)
The two-body problem

Here’s an interesting fact ---

The dynamics of an isolated system of two

particles is equivalent to the dynamics of a
single particle.

So we can always solve the 2-body problem —
it reduces to a 1-body problem.
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Masses m1 and mp have position vec-
tors x1 and xp, respectively. The center
of mass position is X; the relative vector
IST.
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REVIEW
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Dynamics - Systems of Particles
3¢ - Collisions

In everyday life, we normally think of a collision as an event in
which two objects hit each other. In physics the word is used in
a more general way. A collision is an event in which:

d Two objects move together, experience equal but opposite
forces, and accelerate in response to those forces.

O When the two objects are far apart, they move freely, i.e.,

with constant velocity. 7
Y .
Vl/r-
l‘.
m] !V] Eeret i .""
& —x= 00 o - X
m .
. )
.“\VZ

v' Total momentum is conserved. You should be able to prove

that ... m, v, + m, v, =m,; v+ m, Vv,

because of Newton’s third law.

v' The center of mass point moves with constant velocity,
V = P/M = constant ;

again, you should be able to prove that V = P/M . 2




The LAB frame and the CENTER of MASS frame

The LAB frame is the frame of The CENTER of MASS frame is
reference in which the first the frame of reference in
particle is the projectile and which the center of mass of
the second particle is the the two particles is at rest.
target, which is initially at rest.
y D.f Mlz;;i
—
L— % -—@—>* e —@>x
mz U;_ \‘!2_
| =0
Yo = M, G w2 G = 0
- -
= W, U, (o)
PL. | i ¥ Pc = O
V = Uy ) =
L e \/c o)
7]
LAB <& CM transformations
_ _ M2
Vig =Vy =V =—=—Vy
ml + m2
Vye=Vo =V =———V;
ml + m2 3




Totally Inelastic Collisions

A totally inelastic collision is a collision in which the two
particles stick together after the collision.
O Total momentum is conserved.

d Total kinetic energy is not conserved. 1

Example. Consider a totally inelastic coIIision with the target
initially at rest. Before

-4// //

After

s
g

i

N. B. The scattering angle is necessarily 0 in a totally inelastic coIIisim{.z

Momentum is conserved, som; v, =(m; + m, ) v’
v/ =_TV1
ml+m2 AK . m2
Exercise: Show that the change of =
o . Kin m+mo
kinetic energy is ... 7'




Totally Elastic Collisions

A totally elastic collision is a collision in which the total kinetic
energy is conserved.
O Total momentum is conserved.

d Total kinetic energy is conserved. E
Example. Consider a totally elastic Bafors
collision in one dimension, with the m, , v, m,
target initially at rest. ’
g y ’ ’ j—pb . - X
mlvl - le, +m2V2
1 2 _1 2 1 12
>V =ZMyy, " +5 My, rfrer
Algebra: Please solve the equations for the e o
final velocities, v,” and v,’ . <lm m
Results:. E
m; —m 2m
v)=—2 2y, and v,/'=——1 v,
ml + m2 ml + m2
Exercises:

(1) Describe the final stateif @) m; <m,; (b)m;=m,; (c) m;>m,.
(2) What happens if m; << m,; what if m; >> m,?

(3) Suppose a car is traveling at 30 mph; you toss a ping pong ball in front of the
car; and the windshield hits the ping pong ball. How fast will the ping pong ball
moving after the collision? 3




Example. A totally elastic collision in two dimensions (lab frame)

Conservation laws:

P, =M, =myv,'cosé, + myv,'cosd,
Py =0=myv,'sin —myv,'sing,

2 2

_lmy2_lmy2,.1 ‘
K=smyy =5my; = +2myv,

E.g., given v, and 0, ... calculate v/,
v,’, and 0,.

Example: Suppose m;, = m, in a totally elastic collision. Show
that the angle between the final velocities is 90 degrees.

Solution: The masses are equal so the conservation of
momentum is ... v,=v,/+v,.

2 - 9 9 ’ ’
Thus, v/ =v,“+ v, +2v, ¢y,
But conservation of kinetic energy implies v,2 = v,'2+v,’? .

Thus, v,’* v,’= 0 . Since the dot product is 0, the vectors are
perpendicular; i.e., the angle between the vectors is 90
degrees. (Pool players know this empirically')




Elastic Collisions in the Center of Mass frame

An elastic collision in the center of mass frame is particularly simple:
First, the angle between the outgoing particles is 180 degrees; i.e., if
the scattering angle is 0 then the recoil angle is 1 -0 . Second, the final
speeds are equal to the initial speeds.

[[Proof: Because with these final velocities, the total momentum is zero
and the total kinetic energy is constant; that’s obvious from the
diagram.]]
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Dynamics for a System of Particles
3d — Transfer of Momentum or Mass

Review
(1) Dynamics of a single particle
dv - dx .
m—=F and —=vV
dt dt
Or, we can write
dp = dX _
P_F and =y
dt dt
(p=mv)

Mass does not change for a single
particle.

(2) Dynamics of an extended

bject R~
objec ’\& V(

I The center of mass point ‘

moves on a parabola.

Imagine the object subdivided into
many small parts.

The center of mass motion is just like a
particle !
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Dynamics of many particles

(3) Dynamics of many particles
Unlike a solid object, where strong
internal forces hold the structure
constant, a system may have
Internal motions.

Example: Collisions

Still, the center of mass of the
system moves as a particle

g ang E_P
dt dt M

(P = total momentum; F = sum of

external forces, M = total mass, X =

center of mass position)

Example. The bola (a gaucho’s
hunting weapon)

¢ B _ﬂ;‘z’"‘.},.
! ﬁL

b >
2 Tl

re
anymal

The center of mass moves as a
single particle projectile

—

d—PzMQ and ax _F
dt dt M

i.e., d?2X/dt?> = g.
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Transfer of Momentum or Mass

Next we’ll consider systems
where momentum or mass is
transferred from one part of the
system to another.

This is another aspect of the
dynamics of a system of
particles.

Example: Rockets

Example. Loading coal into a train
car.

—[-vcu.u Cav

F = the external force on the car.

There are also internal forces when the coal
lands in the car. Assume that the coal stops
when it lands in the car (does not bounce
around like a rubber ball). The dynamics is
like /inelastic collisions, occurring continuously
in time.

Transfer of mass — to the car

Transfer of momentum — to the coal

Lecture 3-4 3




Loading coal into a train car

Solution.
First Case. F = 0 and v(0)= v,. Velocity
Determine v(t). A —mat
o N +pet

The dynamical system consists
y Y S = p oy = — f (Mc bpet) +A(m~)

of the train car {M_,,} plus the MBS v
coal {M_,,(D}. Mc +ut g

. i Rall ‘&
P = Moy & & Mool U Distance
T AT ¢
M= Z5C 2 1l dncfent i
J <117 s Acceleration
i v, dM dv- — M

P73 7| Olal | = | |a | il -G
&= Vs o) 5 2l 23 (Mc +ut)?

= (M + at) é-c"f i o
dp
A= e

der  — uv

aé - Mctut
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Loading coal into a train car

Second Case. F = F, (a constant
external force) and v(0)= v,.
Determine v(t).

Equation of motion

AP Av

ar —
wE T
(MC i‘y.(:) % Y F; - UV
du- 4€
f‘%"‘/uv‘ Me + ud

;’;[EL (R —uu) — &Cf:-mrr):(
= Lo e tat) — b ]

Solution.
R —uv | He
o IR PO v A Y P
O = __ma v, + ‘C: t
Me +mut
U'/P
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The force due 7o falling water

Example. Water fiows in he hose at velocity
v, The diamefer of fhe hose is d. Calculate
The force on the surface.

F hose_
s

falling water
(height h)

Y N—/
"@ze—\"

Solution.
Consider a small fime inferval df:

Calculate The change of momenitum of fhe
wafter fhat hits The surface during that fime.

mass: dm = r A v, dr

velocity at the surface: vs=~ vZ+2gh
change of momenifum dP = dm v (approx.)
normal force: N=dP [ df=rAv,vs
Numerical Example.

d=254cm ,v,= 3048 cm/s , h= 3048 cm

A=S507 x 107 m? ; vg= 246 mfs ;
(r= /000@/073/

N = 0.380 newton (= force on fhe surface
due To momenitum franster)
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The Falling Chain

Example. t=0 time =
Mass M, %
Length L

0

Calculate the force on the surface.

Solution. Treat the chain as a continuum.

Freefall: v=gt and x =1 gt
P(t) = pie, (L — %) v where p,,, = M/L
dP /dt = l:ext = Mg - N approx.; assuming

the links don’t bounce

I’ll leave the rest of the calculation as an
exercise.

Answer: When the top of the chain hits the
table, i.e., for x = L, the force on the surface
is

F -N = 3 Mg.

surf —

Lecture 3-4 7




Dynamics for a System of Particles
3-5: Rockets

Combustion releases chemical energy, Example 1: Anisolated rocket with

which is converted into kinetic energy of constant pLandu (in free space).
the exhaust gases. Total momentum ...

F =0 isolated
P _ P + P external rocket
— ' rocket exhaust dP
dap at - ©
= I external
dt externa For a short time interval 0t, calculate

These are the principles of dynamics for op
a system of particles (rocket & gas). oP = P(t+0t) - P(t)
Two parameters of the exhaust gas Let m(t) = mass of the rocket (and

IL = mass rate (kg/s) enclosed fuel) at time t; let v(t) = the
velocity of the rocket at time t. Then

u = relative speed (m/s
peec ™ P(E) =m(t) v(t) Lheipee”
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Rocket in

Free Space

P(t) = m(t) V(t) rocket and enclosed gas at t
P(t+0t) = m(t+0t) v(t+0t) + (v-u) 1 ot

momentum of the gas
expelled during time ot

T

U({/

OP = m(t+0t)v(t+0t)+(v-u)u ot
- m(t)v(t)

OP = (m-p ot) (v + Ov) + (v-u) n ot
-my

oP = mSv—uuSt/+O(6t)2

Important: We can neglect

dP dv that in the limit 8t — 0.
0 =) m—T —uu=0

dt

Also,
m(t) = m,— ¢
So the equation of motionis

(m, -

fe/qa—aﬁ‘q, of varia bles

AU
AU" = "'——"—‘"a'o__;at 4t
v +
d = -A‘—————d'f
_% - fb Mot €
U— ¢ = pu(Zh)h(w *M)]
= ?*{""A(nv.,-—ynt)-{—z.m}
L Mo
= %
ac o ke
Ve, e Mo
W) = U + wu ba gy
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Rocket in Free Space

Equation of motion:
dv
(mo—ut)zz' = L&
Solution: "
P T
o~ Mt
masses
Mg Empty Rocket
me Initial Fuel
dite M, Mg + Mg
and 3" ~ m m.—pt
o — M
Jovos |
o naéen
| ny time dependasr== |
'. ise. Show, fora 1 ge5uming |
"| E:f:: mass rate u(t), but 5;’::] ii,c time),
1° . - onstant (indepe” |
thatuis? m |
0. .
ot W
Lecturd




Rocket at the surface of the Earth

Example 2: A rocket with constant
and u, at the surface of the Earth.

Fexternal =-mg
da _
a -9

For a short time interval ot, calculate
oP

5P = P(t+5t) - P(t)

Same as before,

Equation of motion:

dv
ee. = U -
Mags ~ HuTm9

S'epamﬁ'«,. £ Vdr:‘a‘bk’::

-4, = f*{—’—“—;’f‘-" —gf 4

= Mgt + Wy 4"‘#*

Examdse Venly {eat the mihnd
M’J cbaa/')'m v I‘al‘;“ﬂﬂ-

Solution:
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Rocket at the surface of the Earth

Solution:

Exercise:
What is the condition for take-off:
i.e., upward acceleration (a > O) at t = 0?

Parameters: v,=100m/s
m me t u
100kg 900kg 365°4bo0m/s

3000

2500

v(t) /
free space /o~

2000

1500

1000

500

10

20 30

40

50

Answer:
a=dv/dt=-g+up/(m,-put)

a(0) > O requires | pu>myg

In words, the thrust must be > the weight.

Exercise:
What is the height at burnout?

Lecture 3-5

Answer:
me /| m

t
H, =f0 l9v(1:) dt =fo( -gt + uln —n;—e—,;: )dt
o=

(I'll leave the calculation as an exercise.)

Note: H, is not the maximum height. The rocket is still
moving upward at burnout. It reaches the maximum
height whenv =0.




