
Classical Dynamics for a System of Particles 
(Chapter 9)

Momentum and the Center of Mass

• Toss a small pebble  • Toss a small pebble. 
It will follow a parabolic 
trajectory, as shown.

The momentum is, by definition, p = m v .

The x component is constant,

px = m v0 cos θ ;

the y component decreases at the rate  − mg,

py = m v0 sin θ − m g t .

The momentum vector is

p(t) = p0x i + ( p0y − m g t ) j ; (1)p(t)  p0x i + ( p0y m g t ) j ;

it is consistent with Newton’s second law,

dp / dt = − m g j (the weight)

All this is a familiar example of single-particle 

( )

(2)
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All this is a familiar example of single-particle 
dynamics.



• Now toss a handful 
of small pebbles. 

Each pebble will probably move independently. (Two 
pebbles could hit each other as they move  but that pebbles could hit each other as they move, but that 
would be unlikely; we’ll ignore that possibility.) Then 
we can write the momentum of the i-th pebble as

pi(t) = p0ix i + ( p0iy − mi g t ) j ,

consistent with Newton’s second law,

dpi / dt = − mi g j (the weight of pebble #i)

We know the complete dynamics of the system 
fbecause the motions of the pebbles are independent
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The total momentum is defined by

Σ
N

P(t) = Σ pi(t)  ;

by the complete dynamics,

P(t) = P0x i + (P0y − Mg)j                        

i=1

(3)
y

where P0 is the initial momentum and M is the total 
mass, M = Σ mi . Compare equations (3) and (1). You 
should see that the total momentum of the N 
pebbles is mathematically the same as if there were pebbles is mathematically the same as if there were 
only one large pebble with mass M.

The center of mass is the “average position of the 
system of particles, weighted by their masses.” 
That is, N
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An important theorem relates the total momentum 
d  f and center of mass:

P = M V where     V = dX
dt

(4)

Here’s the proof …
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• Now toss a handful of 
strongly-interacting pebbles. 

Suppose that some pebbles Suppose that some pebbles 
are tied together by strings. 
Suppose that some pebbles 
are connected by springs, 
initially stretched or initially stretched or 
compressed. You are not now 
tossing a set of N independent 
particles, but a big blob of 
pebbles that are exerting pebbles that are exerting 
forces on each other.  

But we can determine the total momentum P(t) and the 
center of mass trajectory X(t). The remarkable result is center of mass trajectory X(t). The remarkable result is 
that the total momentum and the center of mass 
trajectory are exactly the same as if the pebbles were 
not exerting forces on each other:
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Note that equations (5) and (6) (for strongly interacting 

particles) are the same as equations (3) and (4) (for non-

interacting particles). Why are the total momentum and 
center of mass independent of the internal forces in 
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center of mass independent of the internal forces in 
the system of particles?



Proof of equation (5)
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Proof of equation (6)
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These examples — the non-interacting pebbles and the blob 
of strongly interacting pebbles — illustrate something 
important about the dynamics of a system of particles.  
Questions about the total momentum and center of mass
may have simple answers, independent of complicated 
internal dynamics.  

Exercise: Prove generally, i.e., for 
any system of particles …

 h  M  th  t t l  P  th  

CM

and
VP = M

… where M = the total mass, P = the 
total momentum, V = dX/dt = 
velocity of the center of mass point, 
and Fext = the sum of all external
forces

ext

and

FP
=

dt
d

Reading and problem assignments:

forces.

Reading and problem assignments:

Read Chapter 9 from the 
textbook, Thornton and Marion, 
Classical Dynamics.

Do the LON-CAPA problems 
entitled “Homework Set 3a”.
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Classical Dynamics for a System of Particles (Chapter 9)

The two-body problem

Here’s an interesting fact ---Here s an interesting fact 
The dynamics of an isolated system of two 

particles is equivalent to the dynamics of a 
single particle.

So we can always solve the 2-body problem —
it reduces to a 1-body problem.
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Please verify that equations (3) and (4) follow from equations (5) and (6).



So the motion of the center of mass is constant 
velocity:      X(t) = V t    and    V = P/M .
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Dynamics – Systems of Particles

3c - Collisions

In everyday life we normally think of a collision as an event inIn everyday life, we normally think of a collision as an event in 
which two objects hit each other. In physics the word is used in 
a more general way. A collision is an event in which:

Two objects move together, experience equal but opposite 
f d l h fforces, and accelerate in response to those forces.

When the two objects are far apart, they move freely, i.e., 
with constant velocity. 1

Total momentum is conserved You should be able to proveTotal momentum is conserved. You should be able to prove 
that …          m1 v1 + m2 v2 = m1 v1’ + m2 v2’,
because of Newton’s third law.

The center of mass point moves with constant velocity,
V = P/M = constant ;

again, you should be able to prove that V = P/M . 2



The LAB frame and the CENTER of MASS frame

The LAB frame is the frame of The CENTER of MASS frame is 
reference in which the first 
particle is the projectile and 
the second particle is the 
target, which is initially at rest.

the frame of reference in 
which the center of mass of 
the two particles is at rest.

g , y

1 2
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Totally Inelastic Collisions

A totally inelastic collision is a collision in which the twoA totally inelastic collision is a collision in which the two 
particles stick together after the collision.

Total momentum is conserved.
Total kinetic energy is not conserved. 1

Example. Consider a totally inelastic collision with the target 
initially at rest.

N. B. The scattering angle is necessarily 0 in a totally inelastic collision.2

Momentum is conserved, so m1 v1 = ( m1 + m2 ) v’1 1 1 2

Exercise: Show that the change of
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Totally Elastic Collisions

A totally elastic collision is a collision in which the total kinetic 
i denergy is conserved.

Total momentum is conserved.
Total kinetic energy is conserved. 1

Example. Consider a totally elastic 
collision in one dimension, with the 
target initially at rest.

'' mmvm +

Algebra: Please solve the equations for the 
fi l l iti ’ d ’
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final velocities, v1’ and v2’ .
Results: 2

1221 d vv
mmm −

''

Exercises:
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(1) Describe the final state if (a) m1 < m2 ;   (b) m1 = m2 ;     (c) m1 > m2.

(2) What happens if m1 << m2; what if m1 >> m2 ?

(3) Suppose a car is traveling at 30 mph; you toss a ping pong ball in front of the 
car; and the windshield hits the ping pong ball. How fast will the ping pong ball be p g p g p g p g
moving after the collision? 3



Example. A totally elastic collision in two dimensions (lab frame)

Conservation laws:Conservation laws:
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E.g., given v1 and θ1 … calculate v1’, 
v2’, and θ2.

Example: Suppose m1 = m2 in a totally elastic collision. Show 
that the angle between the final velocities is 90 degrees.

Solution: The masses are equal so the conservation of 

momentum is …       v1 = v1’ + v2’.

Thus,      v1
2 = v1’2 + v2’2 + 2 v1’ v2’

But conservation of kinetic energy implies v1
2 = v1’2+v2’2 .

Thus, v1’ v2’ = 0 . Since the dot product is 0, the vectors are 
perpendicular; i e the angle between the vectors is 90perpendicular; i.e., the angle between the vectors is 90 
degrees. (Pool players know this empirically!)



Elastic Collisions in the Center of Mass frame

An elastic collision in the center of mass frame is particularly simple: p y p
First, the angle between the outgoing particles is 180 degrees; i.e., if 
the scattering angle is θ then the recoil angle is π − θ . Second, the final 
speeds are equal to the initial speeds.
[[Proof: Because with these final velocities, the total momentum is zero 
and the total kinetic energy is constant; that’s obvious from the 
diagram.]]







Dynamics for a System of Particles

3d – Transfer of Momentum or Mass

Review
(1) Dynamics of a single particle

(2) Dynamics of an extended 
object

v
dt
xd

F
dt
vd

m
r

rrr

==      and     

Or, we can write

     and     v
xd

F
pd r

rrr

==

Imagine the object subdivided into 
many small parts.

)(

     and     

vmp

v
dt

F
dt

rr
=

==

Mass does not change for a single 
particle.

The center of mass motion is just like a

Lecture 3-4 1

The center of mass motion is just like a 
particle !



Dynamics of many particles

(3) Dynamics of many particles
Unlike a solid object, where strong 
internal forces hold the structure 

t t t h

Example. The bola (a gaucho’s 
hunting weapon)

constant, a system may have 
internal motions.
Example: Collisions

Still, the center of mass of the 
system moves as a particle The center of mass moves as a 

single particle projectile

M
P

dt
Xd

F
dt
Pd

rr
r

r

==      and     
PXd

gM
Pd

rr
r

r

==      and     
(P = total momentum; F = sum of 
external forces, M = total mass, X = 
center of mass position)

i e  d2X/dt2  g

Mdt
gM

dt
==      and     
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i.e., d2X/dt2 = g.



Transfer of Momentum or Mass

Next we’ll consider systems 
where momentum or mass is 
transferred from one part of the 

Example. Loading coal into a train 
car.

transferred from one part of the 
system to another.
This is another aspect of the 
dynamics of a system of dynamics of a system of 
particles.
Example: Rockets

F = the external force on the car.
There are also internal forces when the coal 
l d i h A h h llands in the car. Assume that the coal stops 
when it lands in the car (does not bounce 
around like a rubber ball). The dynamics is 
like inelastic collisions, occurring continuously , g y
in time.

Transfer of mass – to the car

Transfer of momentum – to the coal
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Loading coal into a train car

SolutionSolution.

First Case. F = 0 and v(0)= v0. 
D t i (t)

Velocity

Determine v(t).
The dynamical system consists 
of the train car {Mcar} plus the car

coal {Mcoal(t)}.

Distance

Acceleration
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Loading coal into a train car

Solution
Second Case. F = F0 (a constant 
external force) and v(0)= v0. 
D t i  (t)

Solution.

Determine v(t).

Equation of motion

Lecture 3-4 5



The force due to falling water

Example Water flows in the hose at velocity SolutionExample. Water flows in the hose at velocity 
v0. The diameter of the hose is d. Calculate 
the force on the surface.

Solution.
Consider a small time interval dt.
Calculate the change of momentum of the 
water that hits the surface during that time.hose

mass: dm = r A v0 dt

velocity at the surface: vS = √ v0
2 + 2 g h

falling water
(height h)

change of momentum dP = dm vS (approx.)

normal force: N = dP / dt = r A v0 vSsurface

( g )

Numerical Example.

d = 2.54 cm , v0 = 30.48 cm/s , h = 30.48 cm

A = 5 07 x 10-4 m2 ; v = 2 46 m/s ;A = 5.07 x 10 m ; vS = 2.46 m/s  ; 
( r = 1000 kg/m3)

N = 0.380 newton ( = force on the surface 
due to momentum transfer)
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The Falling Chain

Example Solution  Treat the chain as a continuumt 0 ti tExample. Solution. Treat the chain as a continuum.

Free fall:  v = g t   and   x = ½ g t2

P(t) = ρlen (L – x)  v       where  ρlen = M/L

Mass M,

Length L

t = 0 time = t 

x
ρlen ρlen

dP /dt = Fext = Mg – N

I’ll leave the rest of the calculation as an 

approx.; assuming

the links don’t bounce

C l l h f h f

I ll leave the rest of the calculation as an 
exercise. 

Answer: When the top of the chain hits the 
table, i.e., for x = L, the force on the surface 

Calculate the force on the surface. is

Fsurf = -N = 3 Mg.
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Dynamics for a System of Particles

3-5:   Rockets

Example 1: An isolated rocket with 

constant μ and u     (in free space).

Combustion releases chemical energy, 

which is converted into kinetic energy of 

the exhaust gases. Total momentum …
Fexternal = 0

dP
=  0

dt

g

P  =  Procket +  Pexhaust

dP
= F l

isolated 
rocket

d
For a short time interval δt, calculate 

δP

δP = P(t+δt) - P(t)

= Fexternaldt

These are the principles of dynamics for 

a system of particles (rocket & gas).
Let m(t) = mass of the rocket (and 

enclosed fuel) at time t; let v(t) = the 

velocity of the rocket at time t. Then

P(t) = m(t) v(t) the rocket

p

Two parameters of the exhaust gas

μ = mass rate (kg/s)

u = relative speed (m/s)
P(t) = m(t)  v(t) the rocket 

at time t
p ( )

1Lecture 3‐5



Rocket in Free Space

P(t) (t) (t) AlP(t) = m(t)  v(t)    rocket and enclosed gas at t

P(t+δt) = m(t+δt) v(t+δt) + (v-u) μ δt

momentum of the gas

Also,

m(t) = m0 – μ t
So the equation of motion is

momentum of the gas 

expelled during time δt

(m0 – μ t ) ---- =  μ u
dv
dt

δP = m(t+δt)v(t+δt)+(v-u)μ δt

- m(t)v(t) 

δP = (m-μ δt) (v + δv) + (v-u) μ δt

– m v

δP = m δv – μ u δt + O (δt)2δP =   m δv μ u δt +    O (δt)

Important: We can neglect 
that in the limit δt → 0.

dP dv
=0        m        μ u = 0

2Lecture 3‐5

=0        m        − μ u = 0
dt dt



Rocket in Free Space

E ti f ti B t            t  /Equation of motion:

(m0 – μ t ) ---- =  μ u

Burnout            tb= mF/m
…   = the time when all the fuel has 

burned. The acceleration drops to 0.

Then the velocity is constant

dv
dt

Solution:

v = v0 + u ln -----------

Then the velocity is constant,

vfinal = v0 + u ln ---------

m0

m0 – μ t

masses

mR+mF
mR

Acceleration

a(t)= --- = ---------

masses
mR Empty Rocket
mF Initial Fuel
m0 mR + mF

dv μ u

dt m – μ t
m m0 – μ t

dt m0 – μ t 

Parameters:  v0 = 100m/s
mR mF tburnout u
100kg   900kg  30s  1000m/s

v(t)  [ m/s]

a(t) [ m/s2]

g g /

a

300

3Lecture 3‐5

a(t)  [ m/s ]

t  [s]

0



Rocket at the surface of the Earth

Equation of motion:

dv
m ---- =  μ u – m g

dt

Example 2: A rocket with constant μ
and u, at the surface of the Earth.

FFexternal = -mg

dP
=  -mg

dt
For a short time interval δt, calculate 

δP

δP = P(t+δt) - P(t)

Same as before,

dP dv
---- =   m ---- – μ u
dt dt

Solution:

m0v = v0 – g t + u ln ----------
m – μ t

Lecture 3‐5 4

dt dt m0 – μ t



Solution:

Rocket at the surface of the Earth

Exercise:Solution:

m0v = v0 – g t + u ln ----------
m0 – μ t

Exercise:

What is the condition for take-off;

i.e., upward acceleration (a > 0) at t = 0?

Answer:

a = dv /dt = -g + u μ /(m0 – μt) 

a(0)  > 0  requires     μ u > m0 g

Parameters:  v0 = 100m/s
mR mF tburnout u
100kg   900kg  30s  1000m/s

q

In words, the thrust must be > the weight.

v(t)
free space Exercise:

v(t)
Earth

What is the height at burnout?

Answer:
tb m0

mF /μ
b 0

Hb =         v(t)  dt =    ( -g t  +  u ln -------- )dt
0 O m0 – μ t

(I’ll leave the calculation as an exercise.)

Note: Hb is not the maximum height. The rocket is still 
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moving upward at burnout. It reaches the maximum 

height when v = 0.


