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PHY 451 
 
Notes for Computerized Cavendish Balance 
 

1. Calibration: Use the “optical-lever” method for establishing the relationship between 
voltage output (Vout) of the electronics and the angle of rotation  of the boom containing 
the small masses.  To obtain 
proper alignment between the 
laser and the balance, there are 
two Si mirrors mounted on the 
balance.  One mirror is on the 
front glass cover of the balance 
and is used for aligning the laser 
beam  to this glass.  The 
second mirror is attached to the 
boom and is accurately situated 
so its plane is parallel to the axis 
of the boom.  Thus one can tell 
when the boom is close to 
parallel to the plane of the front 
glass plate.  A third Si mirror is 
mounted on the meter stick underneath the laser so you can align the meter stick  to the 
laser beam. 

Figure 4 in the manufacturer’s manual is somewhat confusing.  See revised figure, 
above.  So is the position of the laser beam on the meter stick after reflecting off the 
mirror on the glass cover of the balance.  S is the position of the laser beam on the meter 
stick after reflecting off the mirror on the boom.  Angle  = f(S-So, L), where f is some 
trigonometric that you have to work out.  A plot of Vout vs.  should follow a straight line 
whose slope(and uncertainty) you want to calculate. 
Procedure: After aligning the laser beam, so you know where So appears on the meter 
stick, measure L.  Then rotate slightly the top contact of the torsion fiber via the brass 
lever arm on top of the balance housing until S  So.  Because of the long period of 
oscillation for the balance, it will take some time to get S to be steady and  So.  Once S 
is steady, make sure Vout is close to zero by adjusting the DC offset knob on the 
electronics box next to the apparatus. 

Now you must set the torsional balance into oscillation in order to do the calibration.  
Before you start the oscillation, open the Labview program; and to avoid the digitization 
error, set the voltage range to ~ 0.1 V before you tell the program to start recording 
data.  Try to obtain an oscillation amplitude about So of Smax - So 10 cm on the meter 
stick.  You induce the oscillation by rotating the brass lever arm slightly and then 
returning it to its original position.  This will take some practice.  If you induce too large 
an amplitude, just wait until it damps down.  The Labview program provides a way of 
relating Vout to S.  Over an oscillation from one extremum to the next, you watch S and 
push a button each time S crosses a cm mark (or every other cm mark) on the meter stick.  
Of course, you need to write down your beginning and ending value of S.  Vout will be 
recorded by the computer each time you push the button.  



 
2. Determination of damping constant, resonance frequency:  Wait for the oscillations to 

damp out.  Use geometry to estimate how far you need to move the brass lever to shift 
the quiescent value of S by  ~5 cm on the meter stick.  This will induce an oscillation 
amplitude of Smax - So ~10 cm.  Once the oscillation has been established, use the 
Labview program to record the free damped harmonic oscillation (DHO) of the torsional 
balance.  When the oscillations have damped out, return the brass lever arm to its original 
So position and record another DHO.  You can fit the DHO with the equation provided in 
the manual to determine the frequency and damping constant.  You need to write down 
the value of the damping constant b and the period of oscillation T. 

 
3. A useful way to move the two large Pb balls: To measure the gravitational attraction 

between the large and small balls, you move the large balls back and forth in phase with 
the angular motion of the torsional balance. An apparatus has been constructed for this 
purpose, and a “Timer” program is provided to you to help you keep track of the time.  
The balance and the large balls are now mechanically “decoupled.”  Thus when you 
move the large balls as close as you can to the glass plates on the front and back sides of 
the balance, no direct contact will occur between the balls and the glass plates, 
eliminating possible excitations of the torsional balance.  The heavy granite table top now 
absorbs the shock of the large balls reaching their limits of travel.  First you need to make 
sure that the large balls DO NOT make contact with the glass plates.  
Procedure:  There are two ways to obtain data for determining G.  (1) Just use the 
turning-point analysis outlined in the manual as the oscillations build up during your 
reversal of the large balls.  (2) In the Appendix, we suggest a perhaps more accurate 
method where you keep reversing the large balls until the amplitude of boom oscillation 
becomes steady.  Of course, you can use both methods and see which gives a better value 
of G.  It is very important to maintain an accurate rhythm as you reverse the large balls.  
If you lose this rhythm, the extrema of the oscillations will exhibit an annoying “beat 
pattern.” 

 

4. Calculating G: Eq. (18) in the lab manual reads
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constant of the tungsten fiber.  Given that you have measured T (period of oscillation) 
and can calculate the total rotational inertia I of the boom (including the two small Pb 
balls), you can use Eq. (20) to eliminate K from Eq. (18).  This gives 
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  since (2/T)2 >> b2. 

Note that this equation has a slightly different notation from the one at the end of the 
Appendix. 
 



 
5. The “R-2” gravitational force between two masses: This improved apparatus, 

mentioned in Sect. 4, will allow you to measure this expected R-2 force, where R is the 
distance between the centers of the masses.  What you will do is oscillate the big masses 
through smaller amplitudes so that R is larger, and you should be able to quantify the 
expected lower amplitude of torsional excitation of the balance.  Note:  is the angle of 
closest approach between the big and small masses during the oscillation.  Angle o ( 
33) is the smallest  can be without the big mass hitting the balance housing.  See 
drawing, below.  r and d are the distances between the centers of the big and small 
masses and the pivot point, respectively, where d = 6.665  0.004 cm and r = 8.11  0.01 
cm.  To find o you will need to measure the minimum distance (Ro) between the big and 
small masses. 
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The following graph shows a computation of the normalized total torque on the balance vs.  
and compares the torque with the normalized R-2 contribution to this torque.  For  < ~ 45, 
the R-2 contribution dominates the torque. Note, as expected, that the torque is zero when  = 
90, because both small masses are equidistant from the two big masses. 

 
Procedure:  Aluminum shims (in 5  and 2.5  increments) are provided so you can set the 
value of .  A student has come up with following useful procedure:  Choose the largest  
you want to have and put in the appropriate shims.  When the boom is at rest, start oscillating 
the large balls until you build up a steady-state amplitude of oscillation s.  The value of s is 
proportional to the torque.  Without breaking rhythm, remove some shims (smaller ) so you 
can oscillate the large balls over a bigger angle and keep oscillating until a new s is 
established.  Keep repeating this procedure until  = o.  Of course, in order to calculate the 
torque curve on the above graph, you will have to work out   g(r, d, ) where g is some 
trigonometric function. 
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Appendix 

Determining G from steady-state oscillations under driven resonance 
 
This is a new way to determine G that may have higher accuracy.  You reverse the big balls as 
instructed, but you keep going until you obtain several oscillations of constant amplitude.  In this 
limit, the work done by gravity in each cycle is equal to the loss due to friction, parameterized by 
the damping constant b.  From the decay of oscillations, you can accurately determine b and 1 
that are needed for this analysis, where it will turn out that b << 1.  The only other quantity 
needed is s, the steady-state amplitude of the driven oscillations. 
 

For decay of oscillations, the differential equation is 0b2 2
0   , and its solution is  
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where 22
0

2
1 b .  Note for your experiment that b << 0, giving 1 = 0. 

 
For the driven case at frequency , the differential equation is 
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where  is the torque and I is the rotational inertia.  Here the steady-state solution is 
)tcos()t( s  . 

At resonance,  = 2 where 22
0

2
2 b2  and  = /2, giving  

)tsin()t( 2s   and 
Ib2 2

s 


 . 

Note that since b << 0, you have 2 = 0 = 1. 
However, we are applying a “square-wave” torque of amplitude 0 at frequency 2.  The square 
wave has Fourier components that consist of odd harmonics of 2, but we just want the Fourier 
component at 2 which gives  = (4/)0.  Thus you have 
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and this looks very similar to the case of the build-up of oscillations where   ID
2
10  .  Thus 

the quantities inside the “[ ]” should multiply to the same value for each method—something you 
can test. 

Note also that 
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R
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Finally, for the “steady-state” case, one has 
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for the build-up of oscillations, 
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