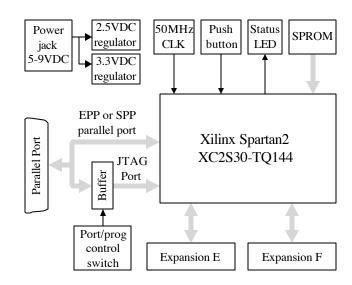


Digilent, Inc. 125 SE High Street Pullman, WA 99163 (509) 334 6306 (Voice and Fax) www.digilentinc.com

Digilab 2 XL Reference Manual


Revision: May 7, 2002

Overview

The Digilab 2 XL (D2XL) development board featuring the Xilinx Spartan 2 XC2S30 FPGA provides an inexpensive and expandable platform on which to design and implement digital circuits of all kinds. D2XL board features include:

- A Xilinx XC2S30 FPGA;
- Dual on-board 1.5A power regulators (2.5V and 3.3V);
- A socketed 50MHz oscillator:
- An EPP-capable parallel port for JTAGbased FPGA programming and user data transfers:
- An SPROM socket for automatic FPGA configuration at power-on;
- A status LED and pushbutton for basic I/O;
- Two 100-mil spaced, right-angle DIP socket 40-pin expansion connectors.

The D2XL board has been designed specifically to work with the Xilinx ISE CAD tools, including the free WebPack tools available from the Xilinx website. Like other Spartan 2 boards in the Digilab family, the D2XL board has been partitioned so that only the hardware required by a particular project

need be purchased. Several existing peripheral boards that mate with the expansion connectors are available (see www.digilentinc.com), and new expansion boards are added often. The low-cost, standard expansion connectors allow new peripheral boards, including wire-wrap or manually soldered boards, to be quickly designed and used. The D2 board ships with a power supply and programming cable, so designs can be implemented immediately without the need for any additional hardware.

Document: 502-015

Functional description

The Digilab D2XL board has been designed to offer a low-cost and minimal system for designers who need a flexible platform to gain exposure to the Spartan 2 device, or for those who need to prototype FPGA-based designs rapidly. The D2XL board provides only the essential supporting devices for the Spartan 2, and routes all available FPGA signals to standard expansion connectors. Included on the board are 2.5VDC and 3.3VDC regulators, a JTAG configuration circuit that uses a standard parallel cable, basic communication ports including an enhanced parallel port, a 50MHz oscillator, and a pushbutton and LED for rudimentary I/O.

The D2XL board has been designed to serve as a host for various peripheral boards. The expansion connectors on the board mate with standard 40-pin, 100 mil spaced DIP headers available from any catalog distributor. Expansion connectors provide the unregulated supply voltage (VU), 3.3V, GND, and 37 FPGA signals to peripheral boards, so system designers can quickly develop applicationspecific peripheral boards. Digilent also produces a collection of expansion boards with commonly used devices. See the Digilent website (www.digilentinc.com) for a listing of currently available boards.

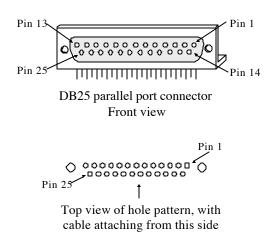

Power Supplies					
VU	Unregulated power supply voltage – depends on power				
	supply used. Must be between 5VDC and 10VDC. Routed to				
	regulators and expansion connectors only.				
VDD33	VCCO/VCC for all devices, routed on PCB plane. 1.5A can				
	be drawn with less than 20mV ripple (typical)				
VDD25	FPGA VCCINT routed on PCB plane				
GND	System ground routed to all devices on PCB ground plane				
Programming and parallel port					
PWE	EPP mode write enable signal (in to FPGA)				
PD0-PD7	Bi-directional data signals				
PINT	Interrupt signal (out from FPGA)				
PWT	EPP mode wait signal (out from FPGA)				
PDS	EPP mode data strobe (in to FPGA)				
PRS	Reset signal (in to FPGA)				
PAS	EPP mode address strobe (in to FPGA)				
On board devices					
BTN1	User-controllable pushbutton input				
LED1	User-controllable status LED				
CLK1	CMOS oscillator connected to GCLK0				
Expansion Connectors					
E4-E40	E bus signals connecting the E connector to the FPGA				
F4-F14	F bus signals connecting the F connectors to the FPGA				
Table 1. D2XL board signal definitions					

Table 1 shows all signals routed on the D2XL board. These signals and their circuits are described in the following sections.

Parallel port and FPGA configuration circuit

The D2XL board uses a DB-25 parallel port connector to route JTAG programming signals from a host computer to the FPGA. This same connector also routes the computer's parallel port pins to the FPGA following the EPP port definition contained in the IEEE 1284 standard. A three-state buffer, controlled by a switch, determines whether the JTAG port or EPP port is enabled. With this circuit, the FPGA can be configured using the JTAG protocol over the parallel cable. The same cable can then be used (after the switch is repositioned) to move data between the board and the host computer using the high-speed EPP protocol. A separate JTAG header is also provided so that a dedicated programming cable (like the Xilinx Parallel III cable) can be used.

The JTAG programming circuit follows the JTAG schematic available from Xilinx, so that the D2XL board is fully compatible with all Xilinx programming tools. The EPP parallel port circuit follows the guidelines in the IEEE 1284 specification, and data rates approaching 2Mbytes/second can be achieved. JTAG and EPP connections are shown in the diagrams below.

Pin	EPP signal	EPP Function
1	Write Enable (O)	Low for read, High for write
2-9	Data bus (B)	Bidirectional data lines
10	Interrupt (I)	Interrupt/acknowledge input
11	Wait (I)	Bus handshake; low to ack
12	Spare	NOT CONNECTED
13	Spare	NOT CONNECTED
14	Data Strobe (O)	Low when data valid
15	Spare	NOT CONNECTED
16	Reset (O)	Low to reset
17	Address strobe (O)	Low when address valid
18-25	GND	System ground

Figure 1. Parallel port connectors and signals

The D2XL board directly supports JTAG and SPROM configuration. Hardware debugger configuration is supported indirectly. To configure the board from a computer using the JTAG mode, set switch 1 (SW1) in the JTAG position, and attach a power supply and programming cable. The power supply must be connected before the parallel cable, or the board may hang in a non-communicating state. The board will be auto-detected by the Xilinx JTAG programming software, and all normal JTAG operations will be available.

To configure the FPGA from an SPROM, load the programmed SPROM into the 8-pin ROM socket (labeled IC6), place SW1 in the PORT position, add jumpers to all mode pins, and apply power.

To configure the board using the hardware debugger protocol, a slight board modification is required – a jumper wire must be soldered to the non-VCC side of R44. Insert wire-wrap posts into the SPROM socket, attach the hardware debugger signals to the appropriate posts, and attach the PROG signal to the jumper wire attached to R44. The hardware debugger programming software will now automatically recognize the board, and hardware debugger programming can proceed as normal.

Programming circuit detail is shown below. Note that all parallel port signals are routed to the test header J12 for easy connection of test and measurement equipment.

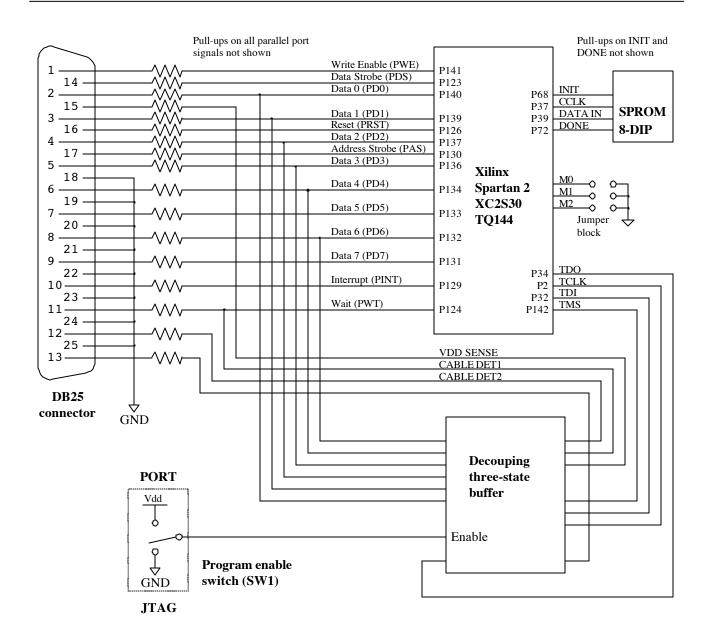


Figure 2. Parallel port and programming circuit schematic

Oscillator

The D2XL board provides a socketed half-size 8-pin DIP oscillator. The board ships with a 50MHz oscillator, allowing for system clocks from virtually DC to 200MHz (using the Spartan 2 DLL circuit and/or clock counter-dividers). Oscillators from 32KHz to 100MHz can easily be substituted, allowing for a wide range of clock frequencies. The oscillator, which is connected to the FPGA GCK0 input (pin 91), is bypassed with a 0.1uF capacitor and it is located as physically close to the FPGA as possible.

Power Supplies

The D2XL board uses two LM317 1.5A voltage regulators to produce 2.5VDC and 3.3VDC supplies. The regulator inputs are driven from an external DC power supply connected to the on-board 2.1mm center-positive power jack. The regulators have 10uF of input capacitance, 20uF of local output capacitance, and 10uF of regulation bypass capacitance. This allows the regulators to produce stable, low noise supplies using inexpensive power supplies, regardless of load (up to 1.5A). The regulator bodies are soldered to the board for improved thermal dissipation. DC supplies in the range of 5VDC to 10VDC may be used.

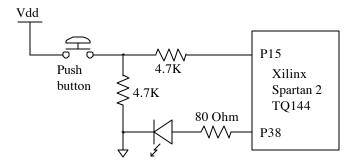
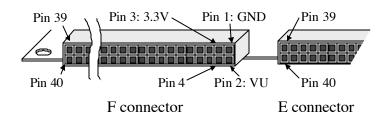
The D2XL board uses a four layer PCB, with the inner layers dedicated to VCC and GND planes. Most of the VCC plane is at 3.3V, with an island under the FPGA at 2.5V. The FPGA and the other ICs on the board all have 0.1uF bypass capacitors placed as close as possible to the VCC pins.

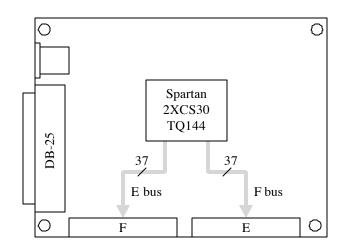
Total board current is dependant on FPGA configuration, clock frequency, and external connections. In test circuits with roughly 50K gates routed, a 50MHz clock source, and a single expansion board attached (the DIO2 board), approximately 200mA +/- 30% of supply current is drawn from the 2.5V supply, and approximately 150mA +/- 50% is drawn from the 3.3V supply. These currents are strongly dependent on FPGA and peripheral board configurations.

All FPGA VCCO pins are connected to the 3.3V supply. If other VCCO voltages are required, please contact Digilent for information regarding various options (Digilent can be contacted through www.digilentinc.com).

Pushbutton and LED

A single pushbutton and LED are provided on the board allowing basic status and control functions to be implemented without a peripheral board. As examples, the LED can be illuminated from a signal in the FPGA to verify that configuration has been successful, and the pushbutton can be used to provide a basic reset function independent of other inputs. The circuits are shown below.

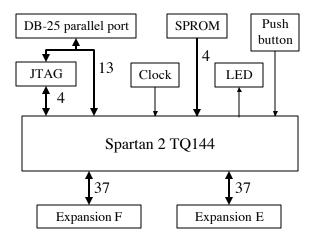

Figure 5. Pushbutton and LED detail

Expansion connectors

The two expansion connectors labeled E and F on the D2XL board use 100 mil spaced DIP headers. Both connectors have GND routed to pin 1, VU routed to pin 2, and 3.3V routed to pin 3. Pins 4-40 for both connectors route directly to individual FPGA pins. The connectors are separated by 400 mils, so any D2-family peripheral board can be placed used with the D2XL board.

The TQ144 package used on the D2XL board has 77 signal pins available to the user (the remaining I/O signals are routed to the parallel connector and other on board devices). Of these, 37 are routed to the E connector, 37 to the F connector, and 3 are left unconnected. Data rates of up to 100MHz are attainable across the E and F connectors.

D2XL expansion connector signals


	D2XL Expansion Connector pinouts						
	E conne	ctor		F connector			
Pin	Signal	S-II pin		Pin	Signal	S-II pin	
1	GND	-		1	GND	-	
2	VU	-		2	VU	-	
3	VDD33	-		3	VDD33	-	
4	A4	122		4	В4	56	
5	A5	121		5	В5	54	
6	A6	120		6	В6	51	
7	A7	118		7	В7	50	
8	A8	117		8	В8	49	
9	A9	115		9	В9	48	
10	A10	114		10	B10	47	
11	A11	113		11	B11	46	
12	A12	112		12	B12	44	
13	A13	103		13	B13	43	
14	A14	102		14	B14	41	
15	A15	100		15	B15	40	
16	A16	99		16	B16	31	
17	A17	96		17	B17	30	
18	A18	95		18	B18	29	
19	A19	94		19	B19	28	
20	A20	93		20	B20	27	
21	A21	87		21	B21	26	
22	A22	86		22	B22	23	
23	A23	85		23	B23	22	
24	A24	84		24	B24	21	
25	A25	83		25	B25	20	
26	A26	80		26	B26	19	
27	A27	79		27	B27	13	
28	A28	78		28	B28	12	
29	A29	77		29	B29	11	
30	A30	75		30	B30	10	
31	A31	74		31	B31	7	
32	A32	67		32	B32	6	
33	A33	66		33	B33	5	
34	A34	65		34	B34	4	
35	A35	63		35	B35	3	
36	A36	62		36	B36	76	
37	A37	60		37	B37	64	
38	A38	59		38	B38	42	
39	A39	58		39	B39	88	
40	A40	57		40	B40	18	

Spartan 2 FPGA

The block diagram of the D2XL board shows all connections between the FPGA and the devices on the board. All FPGA pin connections are shown in the following table.

The Spartan device can be configured using the Xilinx JTAG tools and a parallel cable connecting the D2XL board and the host computer. Note that a separate JTAG header that connects directly to the JTAG pins is also provided.

For further information on the Spartan FPGA, please see the Xilinx data sheets available at the Xilinx website (www.xilinx.com).

D2XL FPGA circuit block diagram

D2XL FPGA Pinout								
Pin	Function	Pin	Function	Pin	Function			
1	VCCO	49	В8	97	VCCIN			
2	TCK	50	B7	98	GND			
3	B35	51	В6	99	A16			
4	B34	52	GND	100	A15			
5	B33	53	VCCO	101	NC			
6	B32	54	B5	102	A 14			
7	B31	55	VCCINT	103	A13			
8	GND	56	B4	104	NC			
9	VCCINT	57	A40	105	NC			
10	B30	58	A39	106	M2			
11	B29	59	A38	107	VCCO			
12	B28	60	A37	108	VCCO			
13	B27	61	GND	109	M0			
14	VCCINT	62	A36	110	GND			
15	BTN1*	63	A35	111	M1			
16	VCCO	64	A37	112	A12			
17	GND	65	A34	113	A11			
18	B40*	66	A33	114	A10			
19	B26	67	A32	115	A9			
20	B25	68	INIT	116	NC			
21	B24	69	PROG	117	A8			
22	B23	70	VCCO	118	A7			
23	B22	71	VCCO	119	GND			
24	VCCINT	72	DONE	120	A6			
25	GND	73	GND	121	A5			
26	B21	74	A31	122	A4			
27	B20	75	A30	123	PDS			
28	B19	76	A36	124	PWT			
29	B18	77	A29	125	VCCINT			
30	B17	78	A28	126	PRS			
31	B16	79	A27	127	VCCO			
32	TDI	80	A26	128	GND			
33	GND	81	GND	129	PINT			
34	TDO	82	VCCINT	130	PAS			
35	VCCO	83	A25	131	PD7			
36	VCCO	84	A24	132	PD6			
37	CCLK	85	A23	133	PD5			
38	LED1	86	A22	134	PD4			
39	DIN	87	A21	135	GND			
40	B15	88	B39*	136	PD3			
41	B14	89	GND	137	PD2			
42	B38	90	VCCO	138	NC			
43	B13	91	MCLK*	139	PD1			
44	B12	92	VCCINT	140	PD0			
45	GND	93	A20	141	PWE			
46	B11	94	A19	142	TMS			
47	B10	95	A18	143	GND			
48	B9	96	A17	144	VCCO			
	* uses GCLK input							
uses SCER Input								