P5.21 In the circuit below $R_{1}=100 \Omega, R_{2}=1000 \Omega, R_{3}=99 \Omega, R_{4}=$ $1000 \Omega, R_{5}=10 \Omega$ and $V=10 \mathrm{~V}$. (a) Relying on the Thevenin theorem, find the equivalent voltage and equivalent resistance for the circuit below when the resistor R_{5} is taken out. (b) What is the current through R_{5} when it is put back into the circuit? (c) If $R_{5}=10 \mathrm{k} \Omega$ were put in instead of 10Ω, what would be the current through it? (d) Calculate the voltage across R_{5} for the conditions in (b) and (c), respectively.

