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experimental errors and inaccuracies.

Why estimate errors?○

(accidental, stupid or intended) mistakes
Systematic errors or deviations
Radom errors or uncertainties 

Classification of errors○

Experimental errors and uncertainties 

There are errors and uncertainties. The latter are unavoidable; eventually it is omnipresent 
thermal noise and quantum noise that causes the results of measurements to be imprecise. 

First, let's try to identify and correct avoidable errors. 
There are several types of error in experimental outcomes:

(accidental, stupid or intended) mistakes○
Systematic errors or deviations○
Radom errors or uncertainties ○

The first type can be avoided. Accidental mistakes can be avoided by careful checking and 
double and triple checking. Stupid mistakes are accidental errors that have been overlooked. 
Intended mistakes (e.g. selecting data that suit your purpose) purposely mislead the reader is a 
scientific misconduct, if not a 'crime'.

Next, why do we care about error analysis?

(Why?)
It is impossible to measure physical quantities without errors. In most cases errors result from 
deviations and inaccuracies caused by the measuring apparatus or from the inaccurate reading 
of the displaying device, but also with optimal instruments and digital displays there are always 
fluctuations in the measurement data. Ultimately there is random thermal noise affecting all 
quantities that are determined at a finite temperature or quantum noise limiting a specific 
measuring method. 

Any experimentally determined quantity therefore has a certain inaccuracy. If the experiment 
were to be repeated, the result would be (slightly) different. One could say that the result of a 
particular experiment is no more than a random sample from a probability distribution. 

When reporting the result of an experiment, it is important to also report the extent of the 
uncertainty, e.g. in terms of the best estimate of some measure of the width of the probability 
distribution. When experimental data are processed and conclusion are drawn from them, 
knowledge of the experimental uncertainties is essential to assess the reliability of the 
conclusion.

(Systematic errors) [Berendsen p. 18]
Systematic errors have a non-random character and distort the result of a measurement. They 
result from erroneous calibration or just from a lack of proper calibration of a measuring 
instrument, from careless measurement (uncorrected parallax, uncorrected zero-point 
deviations, time measurements uncorrelated for reaction time, etc.), from impurities in 
materials, or from causes the experimenter is not aware of. The latter are certainly the most 
dangerous type of error; such error are likely to show up when results are compared to those of 
other experimentalists at other laboratories. Therefor independent corroboration of 
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experimental results is required before a critical experiment (e.g. one that overthrows an 
accepted theory) can be trusted.

(Random errors or uncertainties) [Berndsen p. 19]
Random errors are unpredictable by their very nature. They can be caused by the limited 
precision of instrumental readings, but are ultimately due to physical noise, i.e. by natural 
fluctuations due to thermal motions or to the random timing of single events. Because such 
errors are unavoidable and unpredictable, the work "error" does not convey the proper 
meaning and we prefer to use the term uncertainty for the possible random deviation of a 
measured results from its true value.

If a measurement is repeated many times, the results will show a certain spread around an 
average value, from which the estimated inaccuracy in the average can be determined. The 
probability distribution, from which the measured values are random samples, is supposed to 
obey certain statistical relations, from which rules to process the uncertainties can be derived.

In the case of a single measurement one should estimate the uncertainty, based on knowledge 
of the measuring instrument. For example, a length read on a ruler will be accurate to +-0.2 mm; 
a length read on a vernier caliper will be accurate to +-0.05 mm. Chemists reading a liquid level 
on a graduated cylinder can estimate volumes with a precision of +-0.3 scaled divisions. 

Be aware of the precision of digital instruments: they usually display more digits than warranted 
by their precision. The precision of reliable commercial instruments is generally indicated by the 
manufacturer, sometimes as an individual calibration report. Often the maximum error is given, 
which can have a (partly) systematic character and which exceeds the standard deviation.

(Know where the errors are) [Berendsen]
  
As experimentalist (or theorist who has to deal with statistics of simulation data) you should 

develop a realistic feeling for the errors inherent in your experiments. Thus you should be able 
to focus attention on the most critical parts and balance the accuracy of the various contribution 
factors. 

Suppose you are a chemist who perform a titration (volumetric analysis) by adding fluid from a 
syringe and weighs the syringe before and after the titration. How accurate should your (digital) 
weight measurement be? If the end of a titration is marked by one drop of fluid (say, 10 mg), it 
suffices to use a 3-decimal balance (measuring to +-1 mg). Using a better balance waster time 
and money!

If you are a physicist measuring time-dependent fluorescence following a 1 ns light pulse, it 
suffices to analyze the emission in 100 ps intervals. Using higher resolution wastes time and 
money!

Titration is a common laboratory method of quantitative chemical analysis that is used to 
determine the unknown concentration of an identified analyte.

(Lecture #2)

○ List all data, a histogram or percentiles
○ List properties of the data set

How to report a series of measurements○

How to represent numbers○

How to present physical quantities with their inaccuracies [Berendsen Ch. 2]
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○ Decimal separators: comma or period?
Scientists are strongly advised NOT to use periods or commas to divide long 
numbers into groups of three digits, like 300,00 (English) or 300.000 (eg. French). 
Instead, use a space (or even better, if your text editor allows it, a thin space) to 
separate groups of three digits: 300 000.
Significant figures○
The end result of a measurement must be presented with as many digits as are
compatible with the accuracy of the result. Also when a number ends with
zeros! These are the significant figures of the result. However, intermediate
results in a calculation should be expressed with a higher precision in order
to prevent accumulation of rounding errors. Always indicate the accuracy of
the end result! If the accuracy is not explicitly given, it is assumed that the
error in the last digit is ±0.5.

When inaccuracies must be rounded, then do this in a conservative
manner: when in doubt, round up rather than down. For example, if a statistical
calculation yields an inaccuracy of 0.2476, then round this to 0.3 rather
than 0.2, unless the statistics of your measurement warrants the expression
in two decimals (0.25). See Section 5.5 on page 60. Be aware of the fact
that calculators know nothing about statistics and generally suggest a totally
unrealistic precision.

How to express inaccuracies○
There are many ways to express the (in)accuracy of a result. When you report
an inaccuracy it must be absolutely clear which kind of inaccuracy you mean.
In general, when no further indication is given, it is assumed that the quoted
number represents the standard deviation or root-mean-square error of the

○ Absolute and relative errors
You can indicate inaccuracies as absolute, with the same dimension as the
reported quantity, or as a dimensionless relative value. Absolute inaccuracies
are often given as numbers in parentheses, relating to the last decimal(s) of
the quantity itself.
Using probability distributions○
If the degree of knowledge you have about the reported quantity θ can be

estimated probability distribution.
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expressed as a probability distribution of that quantity, you can report one
or more confidence intervals. This is usually the case if a Bayesian analysis
has been made

○ SI units
Physical quantities not only have a numerical value with inaccuracy, but also
a unit. Always include the proper unit in the correct notation when you report
a physical quantity. There are international agreements on units and notation.
The agreed system of units is the “Système International d’Unités” (SI).4 The
SI units are derived from the SI base units m, kg, s, A, K, mol, cd (see data
sheet UNITS on page 215). You should make it a habit to adhere strictly to
these units, even if you are often confronted with non-SI units in the literature
(dominantly originating from the USA). So, kJ/mol and not kcal/mol, nm (or
pm) and not Å, N and not kgf, Pa and not psi.

Non-SI units○
Some non-SI units are allowed, such as the minute (min), hour (h), day (d),
degree (◦), minute angle (’), second angle (”), liter (L = dm3), metric ton
(t = 1000 kg)) and astronomical unit (ua = 1.495 978 70×1011 m).

○ Typographical conventions
There are also agreed typographical conventions, which should be adhered to
not only in scientific manuscripts, but even in informal reports. With modern
text editors there is no excuse not to use roman, italic or bold type when
required.

The rules are simple:
• italic type for scalar quantities and variables,
• roman type for units and prefixes (mind capitalization),
• italic boldface for a vector or matrix quantity,
• sans-serif bold italic for tensors,
• roman type for chemical elements and other descriptive terms, including
mathematical constants, functions and operators.

Reporting units○

Graphical representation of experimental data○
Experimental results are often presented in graphical form. The expectation
or mean is given as the position (x, y) of (the center of) a symbol in a plot.
The usual representation of inaccuracies in x and/or y is an error bar with
a total length of twice the standard error. While both x and y values may
be subject to experimental errors, very often one of the values (usually x)
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is so accurate that it makes no sense to plot an error bar. Figures 2.6 and
2.7 give examples of such a graphical representation, using the data given in
Table 2.2. The reason to use a logarithmic scale for the concentration is that
an expected exponential decay with time would show up as a straight line.
The linear plot can hardly show the small standard deviations of the last
three points; on the logarithmic plot the s.d. on the small values show as much
larger and asymmetric error bars. Note that the error bars on the last two
points extend below the lower limit (1 mmol/L) of the logarithmic scale and
therefore appear too short on the graph. Negative ordinate values (which may
occur as a result of random errors) cannot be shown at all on a logarithmic
scale.
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○ Propagation through functions

○ Combination of independent terms
If the uncertainty in a result (e.g. the sum of two variables) is composed of
uncertainties in two or more independent measured quantities, these uncertainties
must be combined in an appropriate way. Simple addition of standard
uncertainties cannot be correct: the deviations due to different independent 
sources can be either + or − and will often partly compensate each other.
The correct way to “add up” uncertainties is to take the square root of the
sum of the squares of the individual uncertainties.

○ Combination of dependent terms: covariances
When uncertainties are not independent of each other, the covariances
between x and y play a role

Error propagation [Lyons & Berendsen Ch. 3 ]
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Why do squared uncertainties add up in sums? [Berendsen Appendix A1]

Processing of experimental data

Let's consider the processing of data in its simplest form: given a number of similar observations 
x_i = μ+e_i of an unknown quantity μ, yielding values that only differ in their random 
fluctuations e_i, 
how can you make the best estimate μ* of the true μ? 
And how can you best estimate the accuracy of μ*, i.e., how large do you expect the deviation of 
μ* from the true μ to be? 

Each observation is a sample from an underlying distribution; 
how can you characterize that distribution? 

If you have reasons to assume that the underlying distribution is normal, how do you estimate 
its mean and variance and how do you assess the relative accuracy of those parameters?
And how do you proceed if you don’t wish to make any assumptions about
the underlying distribution?

You will have to look at the distribution function of the data and then indicate how the 
properties of the data lead to estimation of the properties of the distribution function.

Mean and variance
Theoretical frequency functions
The Bernoulli or binomial frequency function
The Poisson frequency function
Gaussian distribution or normal frequency function
The meaning of σ (standard devaition)

Distributions (Frequency functions of one variable) [EMP Ch. 10 & Lyons & Berendsen Ch. 4]
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○ Introduction
○ Linearization of functions
○ Graphical estimates of the accuracy of parameters
○ Using calibration

Graphical handling of data with errors [Berendsen Ch. 6]

Often you perform a series of experiments in which you vary an independent variable, such as 
temperature. What you are really interested in is the relation between the measured values and 
the independent variables, but the issue is that your experimental values contain statistical 
deviations.

You may already have a theory about the form of this relation and use the experiment to derive 
the still unknown parameters. It can also happen that the experiment is used to validate the 
theory or to decide on a modification. It is also possible that you discover a new phenomenon 
beyond the prediction of existing theories.

It is sometimes advantageous to take a global view to qualitatively evaluated fundamental 
relations using simple graphical presentations of the experimental data. The trick of 
transforming functional relations to a linear form allows quick graphical interpretations. Even 
the inaccuracies of the parameters can be graphically estimated. To obtain more accurate 
results, you will need to fit functions to data.

A series of equivalent measurements that should have produced equal results if there had been
no random deviations in the measured data. Very commonly, however, a quantity y_i is 
measured as a function f (x_i) of an independent variable x_i such as time, temperature, 
distance, concentration or bin number. 

The measured quantity may also be a function of several such variables. Usually the 
independent variables – which are under the control of the experimenter –are known with high 
accuracy and the dependent variables – the measured values – are subject to random errors.
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relations.

We will work out a few examples later.

It is not always necessary to perform a precise least-squares fit. It is always meaningful to plot 
the data in such a way that you expect a linear relation.
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A straight line can be adequately judged by visual inspection. A straight line drawn “by eye” to 
fit the points often gives sufficiently accurate results and even the inaccuracies in the 
parameters a and b can be estimated by varying the line within the cloud of measured data 
points. There is nothing wrong with making a quick sketch on old-fashioned graph paper! 

Computer programs are useful when there are many data points, when different points have 
different weights or when high accuracy is required, but they are never a substitute for bad 
measurements and almost never give you more insight into the functional relations. Be careful 
with computer programs that are not well-documented or do something you don’t quite 
understand!

Linearization of functions
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Graphical estimates of the accuracy of parameters

In the previous section you have seen how you can plot your data in such a
way that a linear relationship is obtained and how you can estimate the two
parameters of a linear function by drawing the “best” line through the data
points. In this section you will see how you can make a simple estimate of the
uncertainties in those parameters. Sometimes such estimates are sufficient. If
they are not, a more accurate least-squares fit is required.

Using Calibration
Suppose you work with an instrument or method that produces a reading y (e.g. a digital 
number, a needle deflection, a meniscus height) from which  a quantity x (e.g. a concentration, 
an electrical current, a pressure) must be deduced. When the instrument is not properly 
calibrated, i.e., when the reading does not correspond directly and reliably to the measured 
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quantity, you should calibrate the instrument yourself. For this purpose you produce a 
calibration table, and preferably a calibration curve, by measuring the reading for a number of 
accurately known values of x. These data you either tabulate, or plot and interpolate in a curve, 
or express the relation between y and x in a mathematical function. Often you will tabulate a 
correction table or plot a correction curve that contains the differences between the readings 
and the correct values. Be sure to be explicit what the difference means: usually the correction 
is to be added to the reading to obtain the true value. In all cases you can deduce the value of x 
for any measured reading by inversion of the calibration relation.

How do you proceed and how do you determine the uncertainty in x?
Be explicit!

Make sure in the calibration procedure that you cover the whole range of values for which the 
method will be used. Extrapolation is generally unreliable, but there is also no need to cover 
values that in practice will never occur.

Draw the best line through the points; if the line is not straight, hopefully you can build it up 
from straight segments between calibrated points. If you want to be sophisticated, compute a 
cubic spline fitting function. Now, for any new measurement of x, given by a reading y, the 
quantity x can simply be read back from the calibration curve.

Now consider the inaccuracy of a measurement. There are two sources of error: one is the 
�inaccuracy y in the reading y; the other is the inaccuracy in the calibraƟon curve itself, due to 

inaccuracies of the calibration measurements. You should also be aware of additional errors that 
may occur, e.g. resulting from aging of the instrument after the last calibration. Both types of 
error lead to an uncertainty in x and both sources add up quadratically, because they are 
independent of each other. The two contributions are depicted in Fig. 6.8, which shows how a 
concentration in solution is deduced from a measurement of the optical density in a 
spectrometer. The calibration error is visualized by drawing two parallel sections of the 
calibration curve at distances representing the standard uncertainty in the calibration itself.

If the calibration has been very carefully performed, the calibration error is likely to be smaller 
than the direct error in the reading. In that case only the standard uncertainty σy of the reading 
counts. It leads to a standard uncertainty σx in the measured quantity by the relation
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