Chapter 1 : SECOND QUANTIZATION

Review

$$H = \sum_{ij} c_i^+ < i |T| j > c_j^- + \sum_{ij} c_i^+ c_j^+ < ij |V| kl > c_l^- c_k^-$$

 $[c_i, c_j]_{\pm} = [c_i^+, c_j^+]_{\pm} = 0$

 $[c_i, c_j^+]_{\pm} = \delta_{ij}$ for fermions / for bosons

2. FIELDS

So far we have written the N-particle theory in terms of some complete set of single-particle states

The **s.p.** wave functions are denoted by $\psi_E(x)$ where x = a set of coordinates for one particle, and E = a set of quantum numbers for one particle.

The annihilation and creation operators, e.g., denoted by c_i and c_j^{\dagger} , annihilate or create a particle in the state ψ_{Ei} or ψ_{Ej} , respectively.

But we could choose a different set of *s.p.* states, which would result in a different set of wave functions and quantum numbers; but it is still the same theory — just a different basis.

Now we define a *quantized field* for the particles, such that the theory no longer depends on any specific set of *s.p.* states.

We have the theory written in terms of a specific set of single particle states.

$$H = \sum_{ij} c_i^+ < i |T| j > c_j$$

$$+ \sum_{ij} c_i^+ c_j^+ < ij |V| kl > c_l c_k$$

 $[c_i, c_i]_+ = [c_i^+, c_i^+]_+ = 0$

$$\left[c_{i}, c_{j}^{+}\right]_{\pm} = \delta_{ij}$$
 for fermions / for bosons

Now...

- define the *field operator* for these "particles";
- figure out the defining equations of the field (i.e., commutations relations);
 and, what is the Hamiltonian?

Now define field operators, $\widehat{Y}(\overline{x})$ and $\widehat{Y}^{\dagger}(\overline{x})$, which are independent of the choice of $A \cdot P$, states, but depend on the coordinate. $\widehat{Y}(\overline{x}) = \sum_{i=1}^{\infty} \underbrace{Y}_{E_i}(\overline{x}) C_i$. $\widehat{Y}^{\dagger}(\overline{x}) = \sum_{i=1}^{\infty} \underbrace{Y}_{E_i}(\overline{x}) C_i$

The Hamiltonian in field theory

We have, in second quantization

$$\hat{H} = \sum_{ij'} \langle i|T|j\rangle c_i^{\dagger} c_j$$

$$+ \frac{1}{2} \sum_{ij'kl} \langle ij'|V|kl\rangle c_i^{\dagger} c_j^{\dagger} c_k c_k$$
Congare

$$\int \hat{V}^{\dagger}(\vec{x}) T(\vec{x}) \hat{V}(\vec{x}) (dc)$$

$$= \sum_{ij'} \sum_{ij'} c_i^{\dagger} \int V_{E_i}^{\dagger}(\vec{x}) T(\vec{x}) V_{E_i}^{\dagger}(\vec{x}) c_j$$

$$= \sum_{ij'} \langle i|T|1\rangle c_i^{\dagger} c_j$$
And

$$\int \hat{V}^{\dagger}(\vec{x}) \hat{V}^{\dagger}(\vec{x}') V(\vec{x}, \vec{x}') \hat{V}(\vec{x}') \hat{V}(\vec{x}) (dc)(dc')$$

$$= \sum_{ij'kl} c_i^{\dagger} c_j^{\dagger} \int V_{E_i}^{\dagger}(\vec{x}) V(x, x') V_{E_i}^{\dagger}(x') V_{E_i}^{\dagger}(x')$$

$$c_l c_k \qquad (dc)(dc')$$

$$= \sum_{ij'kl} \langle ij'|V|kl\rangle c_i^{\dagger} c_j^{\dagger} c_k c_k$$

So, in terms
$$q$$
 field equators,

 $\hat{H} = \int \hat{\Psi}^{\dagger}(\vec{x}) \, \hat{T}(\vec{x}) \, \Psi(\vec{x}) \, (d\tau)$
 $+ \frac{1}{2} \int \hat{\Psi}^{\dagger}(\vec{x}) \, \hat{\Psi}^{\dagger}(\vec{x}') \, V(x,x') \, \hat{\Psi}(x') \, \hat{\Psi}(x)$

(dx/dc')

looks in life the $\int_{-1}^{2} f$ quantized Havine Dirian!!

But it's different, because has

 $\left[\hat{\Psi}(\vec{x}), \hat{\Psi}^{\dagger}(\vec{x}')\right]_{\pm} = S^{3}(\vec{x} - \vec{x}').$
 $\hat{\Psi}(\vec{x})$ is an operator that annihilates a particle, and $\hat{\Psi}^{\dagger}(\vec{x})$ cuentes a particle.

One body operators Consider $J = \sum_{k=1}^{N} J(\vec{x}_k)$, a general one-body operator in first. quantized form he second quartised form, J=Z(r|J|s>ctc, In field there his form $\hat{J} = \int d^3x \hat{Y}^{\dagger}(\vec{x}) J(\vec{x}) \hat{Y}(\vec{x}).$ For example, the number density is $N(\vec{x}) = \sum_{k=1}^{N} \delta^{3}(\vec{x} - \vec{x}_{k})$ first quantized or $\hat{N}(\vec{x}) = \hat{Y}^{+}(\vec{x}) \hat{Y}(\vec{x})$ second quantized The number operator is $\hat{N} = \int \hat{n}(\vec{x}) d^3x = \left(\hat{\psi}^{\dagger}(\vec{x}) \hat{\psi}(\vec{x}) d^3x\right).$ (first quartied: N = N; second quantified: N = \(\subsection \cdot \cdo

Field operators and wave functions	But then what is the "wave function"?
What is an electron?	Dirac provided the answer.
particle or wave?	For a single particle in the state with quantum numbers E,
The answer from quantum field theory: there is an electron <i>field</i> ψ (x), and the	$\psi_{E}(x) = \langle x \mid E \rangle$
electron is the quantum [*] of the field.	where $ E\rangle = c_E^+ vacuum\rangle$;
ψ(x) annihilates an electron; ψ ⁺ (x) creates an electron.	$c_E^+ = \int \psi^+(x) \psi_E(x) d\tau.$
	All of this is just formal theory. What can we actually calculate from it?
*quantum = single excitation	