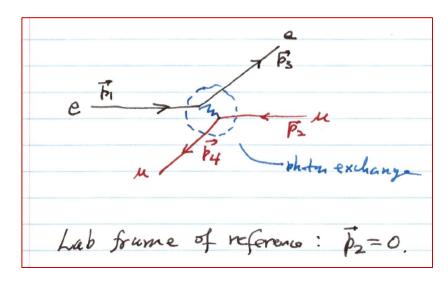
Electron-muon scattering

Imagine the process

$$e(p_1) + \mu(p_2) \rightarrow e(p_3) + \mu(p_4)$$

 $p_1^{\mu} + p_2^{\mu} = p_3^{\mu} + p_4^{\mu}$

We will regard the electron as the projectile and the muon as the target.



Comments.

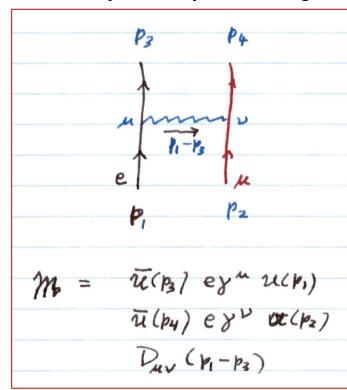
This is an imaginary process, because the muon is an unstable particle (mean lifetime in the muon rest frame = 2.2 µs) so you can't make a muon target. We'll do the calculation, imagining that the muon is stable, as an academic exercise -- a simple example in QED.

One could make eµ scattering more physical by regarding the muon as the projectile and the electron as the target.

E.g., consider a muon created at the top of the atmosphere by a cosmic ray. How does it lose energy (by ionization of molecules) as it passes through the atmosphere. Or, how does a muon make a track (by ionization) in a muon detector?

(1.) The transition amplitude

There is only one Feynman diagram.



$$D_{MV}(g) = \frac{g_{MV}}{g^2}$$

$$M = \frac{e^2}{(p_1 - y_3)^2} \overline{u_3} y^{M} u_1 \overline{u_4} \partial_{M} u_2$$

(2.) Calculate the magnitude squared

$$|\mathcal{M}|^2 = \left(\frac{e^2}{t}\right)^2 \quad \overline{u_3} \, 8^{\mu} \, u_1 \quad \overline{u_1} \, 8^{\nu} \, u_3$$

$$\overline{u_4} \, 8_{\mu} \, u_2 \quad \overline{u_2} \, 8_{\nu} \, u_4$$
There $t = (p_1 - p_3)^2$

(3.) For unpolarized scattering...

... we average over the initial spins and sum over the final spins.

$$\overline{|M|^{2}} = \frac{e^{4}}{t^{2}} \frac{1}{4} \operatorname{Tr} g^{m} (p_{1} + m) g^{2} (p_{3} + v_{4})$$

$$\operatorname{Tr} g_{n} (x_{2} + M) g_{v} (p_{4} + M)$$

$$\overline{|M|^{2}} = \frac{e^{4}}{4t^{2}} E^{mv} M_{nv}$$

(4.) Calculate the traces.

$$E^{\mu\nu} = Tr \; y^{\mu}(p_1 + m) \; y^{\nu}(p_3 + m)$$

$$= 4 p_1^{\mu} p_3^{\nu} - 4 g_{\mu\nu} \; p_1 \cdot p_3 + 4 p_3^{\mu} p_1^{\nu}$$

$$+ m^2 4 g_{\mu\nu}$$

$$= 4 \left[p_1^{\mu} p_3^{\nu} + p_3^{\mu} p_1^{\nu} + g_{\mu\nu} (m^2 - p_1 \cdot p_3) \right]$$

$$M_{\mu\nu} = 4 \left[p_{2\mu} p_{+\mu} + p_{+\mu} p_{2\nu} + g_{\mu\nu} (m^2 - k_1 \cdot p_4) \right]$$

$$E \cdot M = E^{uv} M_{uv}$$

$$= 16 \left[2 p_1 - p_2 p_3 \cdot p_4 + 2 p_1 - p_4 p_2 \cdot p_3 \right]$$

$$+ 16 \left[2 p_1 \cdot p_3 \left(M^2 - p_2 \cdot p_4 \right) + \left(M^2 - p_1 \cdot p_3 \right) Z p_2 \cdot p_4 \right]$$

$$+ (M^2 - p_1 \cdot p_3) \left(M^2 - p_2 \cdot p_4 \right)$$

$$+ (6 \cdot 4 \cdot (M^2 - p_1 \cdot p_3) \left(M^2 - p_2 \cdot p_4 \right)$$

(5.) Substitute Mandelstam variables

$$S = (p_1 + p_2)^2 = (p_3 + p_4)^2$$

$$P_1 \cdot p_2 = p_3 \cdot p_4 = (s - m^2 - M^3)/2$$

$$L = (p_1 - p_3)^2 = (p_4 - p_2)^2$$

$$P_1 \cdot p_3 = (2m^2 - L)/2$$

$$P_2 \cdot p_4 = (2m^2 - L)/2$$

$$P_3 \cdot p_4 = (2m^2 - L)/2$$

$$P_4 \cdot p_4 = (p_4 - p_4)^2 = (p_3 - p_2)^2$$

$$P_4 \cdot p_4 = p_2 \cdot p_3 = (m^2 + M^2 - u)/2$$

step 1 : E dot M in Mandelstam variables

```
In[306]:= (* e mu \rightarrow e mu *)

EdM = 16 * (2 * p1dp2 * p3dp4 + 2 * p1dp4 * p2dp3) +

(-1) * 16 * (p1dp3 - m^2) * 2 * p2dp4 +

(-1) * 16 * (p2dp4 - M^2) * 2 * p1dp3 +

16 * 4 * (p1dp3 - m^2) * (p2dp4 - M^2);

al1 = {p1dp2 -> (s - m^2 - M^2) / 2, p3dp4 -> (s - m^2 - M^2) / 2, p1dp3 -> (2 * m^2 - t) / 2, p2dp4 -> (2 * M^2 - t) / 2, p1dp4 -> (m^2 + M^2 - u) / 2, p2dp3 -> (m^2 + M^2 - u) / 2};

In[314]:= EdM = EdM /. al1;

EdM = FullSimplify[EdM]

Expand[EdM /. {s \rightarrow m^2 + M^2 + s0, u \rightarrow m^2 + M^2 + u0}]

Out[315]= 8 (2 m<sup>4</sup> + 2 M<sup>4</sup> + s<sup>2</sup> + 2 m<sup>2</sup> (2 M<sup>2</sup> - s + t - u) + u<sup>2</sup> - 2 M<sup>2</sup> (s - t + u))

Out[316]= 8 s0<sup>2</sup> + 16 m<sup>2</sup> t + 16 M<sup>2</sup> t + 8 u0<sup>2</sup>
```

$$E = M = 8 \left[(S - m^2 - M^2)^2 + (m^2 + M^2 - u)^2 + 2(m^2 + M^2) t \right]$$

Note that $|M|^2$ is dimensionless and Lorentz invariant.

(6.) Calculate the differential cross section...

...in the lab frame of reference;

$$d' = \frac{1}{2E_1 \cdot 2E_2 \, U_{PRI}} \int \frac{d^3 \, \mu_2}{(2\pi)^3 \, 2E_3} \int \frac{d^3 \, \mu_4}{(2\pi)^3 \, 2E_4} |\mathcal{U}|^2$$

$$(2\pi)^4 \, \delta \left(E_3 + E_4 - E_1 - E_1\right) \, \delta^2 \left(E_3 + E_4 - F_1 - E_2\right)$$

Kinematics of the lab frame

$$P_1$$
 P_2
 P_3
 P_4
 P_4

Energy conservation:

$$\sqrt{p_3^2 + m^2} + \sqrt{(\vec{p_1} - \vec{p_3})^2 + M^2}$$

$$= \sqrt{p_1^2 + m^2} + M$$

Approximation:
$$Me = 0$$

accurate for energies E1 >> 1 MeV

Then the quadron for energy continent in becomes

$$p_3 + \sqrt{(p_1 - p_3)^2 + m^2} = p_1 + p_1$$

$$(p_1 - p_3)^2 + p_2^2 = (p_1 + p_2 - p_3)^2$$

$$p_1^2 + p_2^2 - 2p_1 p_3 \cos 0 + p_1^2$$

$$= p_1^2 + p_2^2 + p_3^2 + p_3^2$$

$$+ 2p_1 p_3 (1 - \cos 0) = 2p_1 p_3$$

$$2p_1 p_3 (1 - \cos 0) = 2p_1 p_3$$

$$p_3 \left[p_3 + p_1 (1 - \cos 0) \right] = p_1 p_1$$

$$p_3 = \frac{p_1 p_2}{p_1 + p_1 (1 - \cos 0)} = \frac{p_1 p_1}{p_2 p_3}$$

step 2 : lab frame kinematics

step 3 : electron mass = 0

```
In[323]:= (* approximate m = 0 *)

appx = {m \rightarrow 0, E1 \rightarrow p1, E3 \rightarrow p3};

EdM = EdM /. appx;

EdM = FullSimplify[EdM]

EdM /. {M \rightarrow 106., p1 \rightarrow 10, p3 \rightarrow 106 * 10 / (106 + 10)}

Out[325]= 32 M<sup>2</sup> (-Mp1 + p1<sup>2</sup> + p3 (M + p3))
```

step 4 : $|ME|^2$

```
Substitute p3 -> M p1 \Delta
         {where I define \Delta = M + p1 * (1 - \cos \theta)}
 ln[327] := EdM = EdM /. \{p3 \rightarrow M * p1 / \Delta\};
         EdM = FullSimplify[EdM]
Out[328]= 32 M<sup>2</sup> p1 \left(-M + p1 + \frac{M^2 (p1 + \Delta)}{\Delta^2}\right)
 ln[329] = Msq = EdM * e^4 / (4 * t^2);
         Msq = Msq /. \{t \rightarrow -2 * M * p1 (1 - M / \Delta)\};
        Msq = FullSimplify[Msq]
         2 e^{4} (-M \Delta^{2} + p1 \Delta^{2} + M^{2} (p1 + \Delta))
                     p1 (M - \Delta)^2
```

$$d := \frac{1}{2E_{1} \cdot 2E_{2} \cdot V_{RI}} \int \frac{d^{3} p_{2}}{(2\pi)^{3}} \frac{d^{3} p_{3}}{2E_{3}} \int \frac{d^{3} p_{3}}{(2\pi)^{3}} \frac{d^{3$$

whose ogain D=M+P1 (1-600)

step 5 : cross section

```
ln[332] := cs = Msq/(64 * Pi^2)/\Delta^2;
        cs = FullSimplify[cs];
        cs = cs /. \{\Delta \rightarrow M + p1 * (1 - costh)\};
        cs = FullSimplify[Expand[cs]]
        e^4 ((1 + costh) M^2 + (-1 + costh)^2 p1^2 + M (p1 - costh^2 p1))
                  32 (-1 + costh)^2 p1^2 (M + p1 - costh p1)^2 \pi^2
ln[336]:= cross = cs /. \{e \rightarrow 1\};
        cross = cross * (4 * Pi / 137) ^2 * 197^2 * (1000 / 100) ; (* 1 b = 100 fm^2 *)
        \sigma[E1\_, th\_, Mmu\_] := cross /. \{p1 \rightarrow E1, costh \rightarrow Cos[th], M \rightarrow Mmu\}
        \sigma[E1, \theta, Mmu]
        \{\sigma[10, 3.14/2, 106], \sigma[200, 3.14/2, 106]\}
        194\ 045\ (E1^2\ (-1 + Cos[\theta])^2 + Mmu^2\ (1 + Cos[\theta]) + Mmu\ (E1 - E1\ Cos[\theta]^2)
Out[339]=
                       18769 \text{ E}1^2 (-1 + \cos[\theta])^2 (\text{E}1 + \text{Mmu} - \text{E}1 \cos[\theta])^2
Out[340] = \{0.0954743, 0.000200322\}
```

