Chapter 6 - Radiative Corrections

There are two kinds of radiative
corrections.

Virtual corrections:
Feynman diagrams have loops.

Real corrections:
Feynman diagrams have additional final
state particles, i.e, photons.

We will see that these two kinds of
corrections cannot be separated.

At first sight this seems very surprising.
But on further thought, it's not so
surprising.

Example. The lowest order corrections to
electron scattering.
Tree diagram (LO of perturbation theory)
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We'll see that the real and virtual effects must be
combined.




Divergences

There are two kinds of divergences
(actually three[ ] but we'll only consider
two)

UV divergences

The integral over an internal loop
momentum gqu may be divergent (i.e.,
infinite) due to the contribution from large
q". For example,

“Miraculously”, the UV divergences cancel
out after RENORMALIZATION.

[ the third kind are collinear
divergences]

IR divergences

(1) The integral over an internal loop
momentum qu may be divergent (i.e.,
infinite) due to the contribution from small

q". For example,
f g

(i1) Also, the integral over final states in a
real radiative process, e.qg.,
Bremsstrahlung, may be divergent due to
the contribution from small g*.

“Miraculously”, the IR divergences cancel
out after COMBINING REAL AND VIRTUAL
CORRECTIONS.
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What is a soft photon?

A soft photon is a low-energy photon. now,
how low is low? that depends on the
process. a photon that is emitted in a
scattering process with characteristic
momentum/energy scale Q is considered
to be a soft photon if w << Q.

CLASSICAL CALCULATION
For details, see P.&Sch.
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The electron trajectory is
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Use classical electrodynamics to calculate the

vector potential
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And use the vector potential to calculate the
radiation fields (E and B).

E(k) = —ikA°(k) + ik° A(Kk);
B(k) = ik x A(k) = k x E(k).

Energy = % /d% (|E(z)]* + B(xz)|?).

Using the explicit form of A(k) (6.7),
the energy radiated*:
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we finally arrive at an expression for
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where ¢ = (p’ — p)2.




Result of the classical calculation

In conclusion, we have found that the radiated energy at low frequencies

is given by
kmax kmax 2
« 2a —q
Energy = — [ dk Z(v,V’ i (%) .
nergy = — / (v,v") g / dk log — (6.18)
0 0

If this energy is made up of photons, each photon contributes energy k. We
would then expect

kmax

Number of photons = % / dk %I (v,v'). SC (6.19)

0

We hope that a quantum-mechanical calculation will confirm this result.

Of course there are no photons in classical electromagnetism.
We need a QCD calculation to find the number of photons.




Q.E.D. CALCULATION

For single photon emission,
there are two Feynman
diagrams in lowest order.

Now we'll make lots of
approximations, which are
valid for soft photons;i.e. the

asymptotic behaviorasw — 0.

(Not strictly 0! But small
compared to the momentum
transfer that occurs in the
scattering process.)

Quantum Computation

Consider now the quantum-mechanical process in which one photon is radiated
during the scattering of an electron:

Let Mj denote the part of the amplitude that comes from the electron’s
interaction with the external field. Then the amplitude for the whole process
is

M = —ieu(p’) (Mo(Pl,p — k)%’y"e;(w

. (6.20)
i(g + K +m)
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e (k) Mo(p' + k,m)u(p).

Mo(p',p — k) = Mo(p' + k,p) =~ Mo(¢, p),




and we can ignore ¥ in the numerators of the propagators. The numerators
can be further simplified with some Dirac algebra. In the first term we have

(#+m)vie, u(p) = [2p*€), + v e, (—F + m)]u(p)
= 2pte;, u(p).
Similarly, in the second term,
u(p') v el (# +m) = a(p’) 2pe;,.
The denominators of the propagators also simplify:
-k —m’==2p-k; (P +k)2-m>=2 k.

So in the soft-photon approximation, the amplitude becomes

/ *

WM = u(p') [Mo(p', p)]u(p) - [e(i, Ek - Zek)] (6.22)

This is just the amplitude for elastic scattering (without bremsstrahlung),
times a factor (in brackets) for the emission of the photon.
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Total probability ~ % f dk 2 I(v,V"). An infrared divergence

We can artificially make the integral in (6.25) well-defined by pretendmg
that the photon has a very small mass p. This mass would then provide a
lower cutoff for the integral, allowing us to write the result of this section as

do(p -0 +(0)) = do(p = p) - 5-lo( 7 1w, )

g (6.26)

~ do(p—p)- log( 2 )log(—q ).

—g%—00




Result of the quantum calculation

Does this agree with the semiclassical
result (SC) derived earlier?

The two results are sort of similar
mathematically; but they are actually very
different physically.

In Section 6.5 we'll see that the
semiclassical result is correct, when we
add all the higher order contributions to
soft photon bremsstrahlung.
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M = ( (»") (2, p) u(p)) : ( (k’)w(k))

Eventually we'll calculate the lowest order
vertex correction. But first let's understand
some general features of the correction,
valid to all orders of perturbation theory.
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iM (2m)6(p% — p°) = —iew(p' )y u(p) - A%(p - p),

iM (2m)6(p” — p°) = —ieu(p’) T* (', p) u(p) - A% (p' — p).

1wt qy
T4(p',p) = v F1(¢°) + 2mq F>(q°),

Electric and Magnetic Form Factors
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limit q — 0 jn the spinor matrix element. Only the form factor Fy contributes.

Using the nonrelativistic limit of the spinors,

w(p" )Y u(p) = ' (p')u(p) ~ 2met¢,

the amplitude for electron scattering from an electric field takes the form

iM = —ieF;(0)¢(q) - 2me'Te.
This is the Born approximation for scattering from a potential

V(x) = eF1(0)$(x).

(6.34)

Thus F1(0) is the electric charge of the electron, in units of e. Since F} 0)=1
already in the leading order of perturbation theory, radiative corrections to

Fi(g?) should vanish at ¢ = 0.
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Again we can interpret M as the Born approximation to the scattering
of the electron from a potential well. The potential is just that of a magnetic
moment interaction,

V(x) = — (1) B(x),

where

() = = [F1(0) + 12 (0)]€" 2€.

This expression for the magnetic moment of the electron can be rewritten in
the standard form

[
gl s |G
& g(?m)
where S is the electron spin. The coefficient g, called the Landé g-factor, is
= Q[Fj({}) - Fg([})} = 2 + 2F5(0). (6.37)

Since the leading order of perturbation theory gives no Fy term, QED predicts
= 2 + (D(a) The leedmg term is the standard predlctmn of the Dirac

dlfferenee between the electron’s magnetic moment a,nd the Dlrec Velue We
will compute the order-a contribution to this anomalous magnetic moment
in the next section.
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