Homework Assignment #1 due Friday March 20

/1/ The standard (Dirac) representation of the gamma matrices is

The chiral (Weyl) representation is

$$\gamma_c^0 = 0$$
 1 and $\gamma_c^i = 0$ σ^i 1 0 $-\sigma^i$ 0

Let U be the unitary matrix such that $\gamma_c^{\mu} = U \gamma^{\mu} U^{\dagger}$.

/a/ What is U? Prove $UU^+ = 1$.

/b/ Show U γ^0 U⁺ = γ_c^0 .

/c/ Show U γ^{i} U⁺ = γ_{c}^{i} .

/2/ Dirac spinors $v(p, \lambda)$ for antiparticles.

In class we derived the Dirac spinors, $u_{\alpha}(p,1)$ and $u_{\alpha}(p,2)$, for particles.

/a/ Use the standard (Dirac) representation for the gamma matrices. What are the Dirac spinors, $v_{\alpha}(p,1)$ and $v_{\alpha}(p,2)$, for antiparticles?

/b/ Prove (i γ . ϑ - m) ψ = 0 for antiparticles.

/c/ Normalize the spinors by \overline{v} v = - 2m. Then determine Σ_{λ} v(p, λ) \overline{v} (p, λ).

/d/ Derive the spinors, $v^{(c)}(p,1)$ and $v^{(c)}(p,2)$, for the chiral (Weyl) representation, from the unitary matrix U.