Citation:

K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

The muon

$$J=1/2$$

Mass m = $0.1134289267 \pm 0.0000000029 u$

Mass m = $105.6583715 \pm 0.0000035$ MeV

Mean life $\tau = (2.1969811 \pm 0.0000022) \times 10^{-6}$ s

 $\tau(\mu+) / \tau(\mu-) = 1.00002 \pm 0.00008$

 $c\tau = 658.6384 \text{ m}$

Magnetic moment anomaly

$$(g-2)/2 = (11659209 \pm 6) \times 10^{-10}$$

 $(g_{\mu +} - g_{\mu -}) / g_{average} = (-0.11 \pm 0.12) \times 10^{-8}$

Electric dipole moment

$$d = (-0.1 \pm 0.9) \times 10^{-19}$$
 e cm

The muon

Decay parameters [b]

Decay parameters [b]
$$\rho = 0.74979 \pm 0.00026$$

$$\eta = 0.057 \pm 0.034$$

$$\delta = 0.75047 \pm 0.00034$$

$$\xi P_{\mu} = 1.0009 \qquad + 0.0016 /- 0.0007 [c]$$

$$\xi P_{\mu} \quad \delta/\rho = 1.0018 + 0.0016 /- 0.0007 [c]$$

$$\xi' = 1.00 \pm 0.04$$

$$\xi'' = 0.7 \pm 0.4$$

$$\alpha/A = (0 \pm 4) \times 10^{-3}$$

$$\alpha'/A = (-10 \pm 20) \times 10^{-3}$$

$$\beta/A = (4 \pm 6) \times 10^{-3}$$

$$\beta'/A = (2 \pm 7) \times 10^{-3}$$

$$\dot{\eta} = 0.02 \pm 0.08$$

μ DECAY MODES

(μ^+ modes are charge conjugates of the modes below.)

Exaction (Fi /F)

$e^- v_e^- v_\mu$	$\approx 100\%$	Confidence level	р(меv/с) 53
$\begin{bmatrix} e^- & v_e & v_\mu & \gamma \\ e^- & \overline{v}_e & v_\mu & e^- e^+ \end{bmatrix}$	[d] (1.4±0.4)% [e] (3.4±0.4) × 10-5		53 53

Confidence level

 $n(M_0V/c)$

Lepton flavor violating modes

e-
$$\gamma$$
 < 5.7 × 10⁻¹³ 90%
e- e-e+ < 1.0 × 10⁻¹² 90%
e- 2γ < 7.2 × 10⁻¹¹ 90%

Properties of the muon

mass = 106 MeV charge = -e

Particle decays obey certain conservation laws.

From what we understand today, the following quantities must be conserved,

without exception,

- energy and momentum
- angular momentum
- electric charge
- color quantum number

In theory, the muon can decay in many ways.

These decay processes are allowed, within the above list of conservation laws:

 \Box $\mu^- \rightarrow e^- + \text{even } \# \text{ neutrinos}$

 $\rm M_{\mu}$ > $\rm m_e$; $\rm \, m_v$ is very small ; so energy and momentum can be conserved ; charge OK; ang. momentum OK.

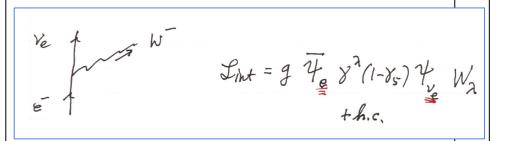
 \Box $\mu^- \rightarrow e^- + photons$

 $M_{\mu} > m_e$; $m_{\gamma} = 0$; so energy and momentum can be conserved; charge OK; ang. momentum OK.

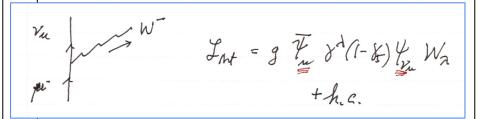
Decays that cannot occur.

 $\mu^- \to e^-$ cannot occur; it cannot satisfy both momentum conservation and energy conservation.

Consider
$$\vec{P}_u = 0$$
; $\vec{E}_u = M_u$;
then $\vec{P}_e = 0$; $\vec{E}_e = M_e$

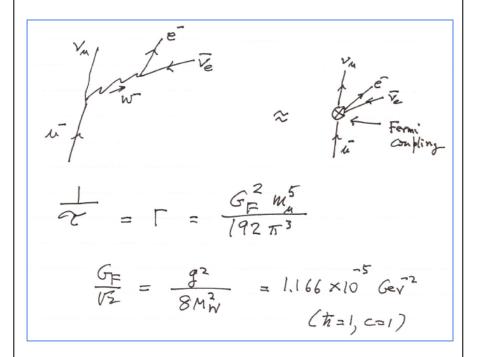

 $\mu^- \rightarrow \tau^- + neutrinos$ cannot occur; it cannot satisfy energy conservation because $M_{\tau} > M_{\mu}$.

Consider
$$P_{\mu}=0$$
; $E_{\mu}=M_{\mu}$; $E_{\tau}=M_{\mu}$; $E_{\tau}+E_{rentrinos}>M_{\tau}>M_{\mu}$

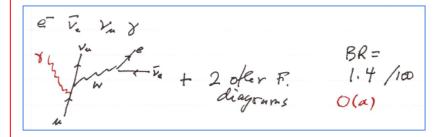

Neutrinos

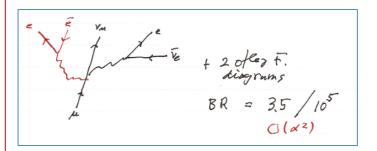
We know three distinct kinds of neutrinos

 v_e v_μ



In weak interactions, μ always interacts with $\nu_{_{u}}$;




The dominant decay mode

$$\mu^-\!\to e^-\!+\nu_{\!_{\underline{e}}}+\nu_{\!_{\mu}}$$

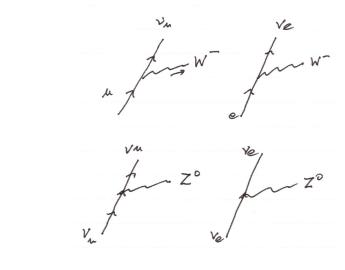
Two rare decays are listed

According to our knowledge of the electroweak interactions, there is another conservation law -- Lepton Flavor Conservation.

• Lepton Flavor Conservation

$$N_{e} = N(e-) + N(v_{e}) - N(e+) - N(\overline{v}_{e})$$

$$N_{\mu} = N(\mu-) + N(v_{\mu}) - N(\mu+) - N(\overline{v}_{\mu})$$


$$N_{\tau} = N(\tau-) + N(v_{\tau}) - N(\tau+) - N(\overline{v}_{\tau})$$

all three are constant.

For example,

$$\mu^- \rightarrow e^- + v_e^- + v_\mu$$

Electroweak gauge interactions in the Standard Model are symmetric with respect to the Lepton Flavor quantum numbers.

For a long time we believed that the LF numbers are conserved.
But they are not.

Neutrino Oscillations

· Ve, Vu, Vt are not

Man eigenstates

eigenstates, with masser = mas

$$(\Delta w_{21})^2 = 7.65 \pm 0.22 \times 10^{-5} \text{ eV}^2$$

 $(\Delta w_{31})^2 = \pm 2.40 \pm 0.12 \times 10^{-3} \text{ eV}^2$

If we know that LF number is conserved, then the decay $\mu \rightarrow e \gamma \frac{cannot}{c}$ occur.

But we know that LF number is not conserved. So the challenge is to observe the decay $\mu \to \ e \ \gamma$.

To be continued ...